
Technische Universität Berlin

Packet Scheduling for Bandwidth
Sharing and Quality of Service Support

in Wireless Local Area Networks

Diplomarbeit
am Lehrstuhl für Telekommunikationsnetze

Prof. Dr.-Ing. Adam Wolisz
Institut für Telekommunikationssysteme

Fakultät IV (Elektrotechnik und Informatik)
Technische Universität Berlin

von

Lars Wischhof
Matrikelnummer: 176815

Betreuer:

Prof. John W. Lockwood
Applied Research Laboratory
Department of Computer Science
Washington University in St. Louis, USA

Dipl.-Ing. Ana Cristina Costa Aguiar
Lehrstuhl für Telekommunikationsnetze
Institut für Telekommunikationssysteme
Technische Universität Berlin

Abstract

The growing deployment of wireless local area networks (WLANs) in corporate envi-

ronments, the increasing number of wireless Internet service providers, and demand for

quality of service support create a need for controlled sharing of wireless bandwidth. In

this thesis, a method for using long-term channel-state information in order to control the

sharing of wireless bandwidth is studied.

The algorithm enables an operator of a WLAN to equalize the revenue/cost for each cus-

tomer in the network and to control the link-sharing based on a combination of user-

centric and operator-centric factors. As an example, we adapt one of the well-known

wireline schedulers for hierarchical link-sharing, the Hierarchical Fair Service Curve Al-

gorithm (H-FSC), for the wireless environment and demonstrate through simulations that

the modified algorithm is able to improve the controlled sharing of the wireless link with-

out requiring modifications to the Medium Access Control (MAC) layer.

In addition, we present the design and implementation for a Linux based prototype. Mea-

surements in a wireless testbed confirm that the scheduling scheme can perform resource-

based link-sharing on currently available hardware conforming to the IEEE 802.11 stan-

dard.

Zusammenfassung

Durch die wachsende Verbreitung von drahtlosen lokalen Netzwerken, die steigende Zahl

von Anbietern drahtloser Internetzugänge sowie die Forderung, unterschiedliche, daten-

typspezifische Dienstqualitäten zu unterstützen, entsteht ein Bedarf nach Verfahren, wel-

che das kontrollierte, gemeinsame Nutzen eines drahtlosen Kanals durch verschiedene

Parteien und/oder Datenklassen erlauben. Innerhalb dieser Arbeit wird ein Ansatz ent-

wickelt, der über einen längeren Zeitraum gesammelte Informationen über den Zustand

des drahtlosen Kanals zu einer bestimmten Mobilstation nutzt, um die Verteilung der ver-

fügbaren Bandbreite zu optimieren.

Dieser Algorithmus erlaubt es dem Betreiber eines drahtlosen Netzwerkes, die gewünsch-

te Bandbreitenverteilung mit Hilfe von nutzer- und betreiberorientierten Kriterien zu spe-

zifizieren und die für einen Nutzer aufgewendeten Ressourcen den von ihm getragenen

Kosten anzupassen. Um die Anwendung dieses Ansatzes zu untersuchen, wird er in einen

der bekannten Algorithmen, den Hierarchical Fair Service Curve Algorithm (H-FSC), in-

tegriert. Simulationen zeigen, dass der modifizierte H-FSC Algorithmus die kontrollierte

Nutzung des drahtlosen Kanals verbessert, ohne Änderungen der Medienzugriffskontroll-

schicht (MAC Schicht) zu erfordern.

Zudem werden Design und Implementation eines Linux-basierten Prototypen entwickelt.

Messungen innerhalb eines entsprechenden Testbetts demonstrieren, dass der vorgeschla-

gene Ansatz mit auf dem IEEE 802.11 Standard basierender Hardware verwirklicht wer-

den kann.

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und

ohne unerlaubte Hilfe angefertigt, andere als die angegebenen Quellen und Hilfsmittel

nicht benutzt und die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen

als solche kenntlich gemacht habe.

Berlin, den 29. Januar 2002

Lars Wischhof

Contents

1 Introduction 1

1.1 Goals . 1

1.2 Organization of this Thesis . 2

2 QoS Architectures 3

2.1 Integrated Services . 3

2.2 Differentiated Services . 4

2.3 Multiprotocol Label Switching . 5

3 QoS Scheduling Algorithms 7

3.1 QoS Packet Scheduling in the Wireline Environment 7

3.1.1 First In First Out (FIFO) / First Come First Served (FCFS) 8

3.1.2 Generalized Processor Sharing (GPS) 9

3.1.3 Weighted Round Robin (WRR) 10

3.1.4 Stochastic Fair Queuing (STFQ) 11

3.1.5 Deficit Round Robin (DRR) . 11

3.1.6 Weighted Fair Queuing (WFQ) 12

3.1.7 Start-time Fair Queuing (SFQ) 13

3.1.8 Worst-Case Fair Weighted Fair Queuing (WF2Q) 13

3.1.9 Worst-Case Fair Weighted Fair Queuing + (WF2Q+) 14

3.2 Wireless QoS Packet Scheduling . 14

3.2.1 Idealized Wireless Fair Queuing (IWFQ) 15

3.2.2 Wireless Packet Scheduling (WPS) 16

3.2.3 Channel-Condition Independent Packet Fair Queueing (CIFQ) . . 16

3.2.4 Wireless Fair Service (WFS) . 18

3.2.5 Wireless Worst-case Fair Weighted Fair Queueing (W2F2Q) . . . 19

ii Contents

3.2.6 Server Based Fairness Approach (SBFA) 19

3.2.7 Channel-State Independent Wireless Fair Queueing (CS-WFQ) . . 20

3.2.8 Wireless Multiclass Priority Fair Queuing (MPFQ) 20

3.3 Comparison of Scheduling Algorithms 22

3.4 Hierarchical Link-Sharing Algorithms 24

3.4.1 Class Based Queuing (CBQ) . 24

3.4.2 Enhanced Class-Based Queuing with Channel-State Dependent
Packet Scheduling (CBQ+CSDPS) 26

3.4.3 Hierarchical Fair Service Curve (H-FSC) 27

4 Hierarchical Link-Sharing in Wireless LANs 31

4.1 Problem Example . 31

4.2 Ratio of Goodput to Consumed Resources 32

4.3 Purely Goodput-Based Wireless Link Sharing 34

4.4 Wireless Link-Sharing Model . 36

4.4.1 Competitive vs. Cooperative Scheduling 36

4.4.2 Synchronization Classes . 37

5 A Wireless H-FSC Algorithm 39

5.1 Cooperative Scheduling . 39

5.2 Competitive Scheduling . 41

5.3 Delay . 41

5.4 Packet Dropping . 41

6 Implementation 43

6.1 The Linux Traffic Control Framework (TC) 43

6.1.1 Components of Linux Traffic Control 44

6.1.1.1 Queuing Disciplines 45

6.1.1.2 Classes . 47

6.1.1.3 Filter . 49

6.1.2 Managing and Configuring Linux TC 49

6.1.2.1 A Simple Example for Wireline Traffic Control 50

6.1.3 Traffic Control Next Generation (TCNG) 52

6.1.4 TC API (IBM Research) . 53

Contents iii

6.1.5 Problems When Applying Standard Linux Traffic Control to Wire-
less Networks . 53

6.2 Extending Traffic Control for Wireless Scheduling 53

6.2.1 Channel Monitor Interfaces . 55

6.2.2 Wireless Queuing Disciplines 57

6.2.2.1 Example: Resource-Consumption Aware FIFO 57

6.3 Implementation of Modified H-FSC Algorithm 61

6.3.1 User Space Configuration Module 62

6.3.2 H-FSC Kernel Module . 64

6.4 Long-Term Channel-State Monitor . 69

7 Simulation 75

7.1 Simulation Model . 75

7.2 Simulation Environment . 76

7.2.1 Wireless Channel Simulator . 77

7.2.2 Traffic Generator (TrafGen) . 80

7.2.3 Additional Trace Analysis Tools 80

7.2.4 Steps of a Simulation Run . 81

7.3 Simulation Results . 81

7.3.1 Scenario 1 . 81

7.3.2 Scenario 2 . 86

7.3.3 Scenario 3 . 89

7.4 Simulation Validation . 89

8 Measurements 93

8.1 Wireless Testbed . 93

8.2 Test Scenario . 94

8.3 Raylink 2 MBit/s Cards (without calibration) 95

8.4 Raylink 2 MBit/s Cards (with calibration) 96

8.5 Lucent/Avaya 11 MBit/s Cards (with calibration) 98

8.6 Summary of Experimental Results . 100

9 Summary and Conclusions 103

iv Contents

A Kernel Configuration and Developed Testbed Tools 105

A.1 Access Point Setup - A To-Do List . 105

A.2 Kernel Configuration . 106

A.3 Developed Testbed Tools . 108

A.3.1 Wireless Channel Monitor Calibration Tool 108

A.3.2 Simple UDP Packet Generator 111

A.4 Extended Simulation Environment - Examples/Additional Information . . 111

A.4.1 Note: Kernel-Level Simulation of Wireless Channels 111

A.4.2 Example for Usage of Wireless Simulation Qdisc 113

A.4.3 Modified H-FSC - Simulation Scenario 1 115

A.4.4 Modified H-FSC - Simulation Scenarios 2 and 3 117

B Source Code Files 123

Acknowledgments 125

Acronyms 127

Bibliography 130

Index 135

List of Figures

2.1 Integrated Services reference model. 4

2.2 Differentiated Services traffic classification and conditioning components. 5

3.1 Simple downlink scheduling model. 8

3.2 Example for FIFO/FCFS scheduling. 8

3.3 FIFO/FCFS: starvation of a flow with a low rate. 9

3.4 Example for GPS scheduling. 10

3.5 Example for WRR scheduling. 11

3.6 Example for WFQ scheduling. 12

3.7 Location dependent errors on the wireless channel. 15

3.8 WRR spreading mechanism. 16

3.9 Link-sharing between two companies and their traffic classes. 24

3.10 Examples for service curves in H-FSC. 27

4.1 Effect of decreasing link quality. 33

4.2 Example for a wireless link-sharing hierarchy. 37

6.1 Linux networking and the OSI reference model. 44

6.2 Parts in the network stack where traffic control is involved. 45

6.3 Simple example of a qdisc which has inner classes, filters and qdiscs . . . 46

6.4 Example network for wireline bandwidth sharing. 51

6.5 Configuration of wired example network. 51

6.6 Schematic overview of extended traffic control architecture. 55

6.7 Wireless link-sharing for two users with the modified H-FSC scheduler. . 63

6.8 Flow chart of packet enqueuing in the modified H-FSC implementation. . 68

6.9 Flow chart of packet dequeuing in the modified H-FSC implementation. . 70

6.10 Correlation between signal level/quality and goodput-rate. 71

vi List of Figures

7.1 Illustration of simulation model. 76

7.2 Structure of simulation environment. 77

7.3 Gilbert-Elliot model of a wireless channel. 78

7.4 State of the wireless link from an AP towards three mobile stations. . . . 78

7.5 Usage of wireless channel simulation qdisc. 79

7.6 Link-sharing hierarchy for Scenario 1. 82

7.7 Scenario 1: Goodput for varying adaptive modulation. 83

7.8 Scenario 1: Goodput for varying pb. 83

7.9 Scenario 1: Cumulative delay probabilities. 85

7.10 Link-sharing hierarchy used in Scenario 2 and 3. 86

7.11 Scenario 2: Effect of decreasing link quality on delay. 87

7.12 Scenario 2: Decreasing link quality and number of dropped packets. . . . 88

7.13 Active classes in Scenario 3. 89

7.14 Scenario 3: Goodput available for selected mobile stations. 90

7.15 Validation of simulation results. 91

8.1 Wireless testbed. 94

8.2 Estimated signal level to goodput mapping for Raylink card. 95

8.3 Results for Raylink without calibration. 96

8.4 Measured signal level to goodput mapping for Raylink card. 97

8.5 Results for Raylink with calibration. 98

8.6 Measured link quality level to goodput mapping for Lucent card. 100

8.7 Results for Lucent 11 MBit/s cards with calibration. 101

A.1 WchmonSigMap, the channel monitor calibration tool. 109

A.2 Configuring the calibration tool. 109

A.3 Measuring goodput using the calibration tool. 110

A.4 Editing the results. 110

A.5 Simple UDP packet generation tool. 111

A.6 Example for using kernel-level wireless simulation. 112

List of Tables

3.1 MPFQ mapping of ATM classes to priorities/schedulers. 21

3.2 Comparison of scheduling algorithms. 23

3.3 Definition of class charateristics in CBQ. 25

4.1 Service curve parameters for link-sharing example. 36

6.1 Interface of a scheduler/qdisc in the Linux traffic control framework. . . . 48

6.2 Interface of a class. 48

6.3 Interface of a filter. 50

6.4 Channel monitor/scheduler interface. 56

6.5 Channel monitor/device driver interface. 56

6.6 Additionally exported kernel functions. 57

6.7 Global data for a modified H-FSC scheduler instance. 66

6.8 Data of a class of the modified H-FSC scheduler. 67

7.1 Scenario 2 and 3: Service curve parameters. 86

7.2 Scenario 2 and 3: Packet sizes. 87

8.1 Results for Raylink without calibration. 97

8.2 Results for Raylink with calibration. 99

8.3 Results for Lucent/Avaya with calibration. 101

A.1 Kernel configuration options. 107

A.2 Scenario 1: Average goodput rates (adaptive modulation). 115

A.3 Scenario 1: Average goodput rates (Markov model). 115

B.1 Added/modified files in Linux kernel source tree. 124

B.2 Added/modified files in iproute2 source tree. 124

B.3 Added/modified files in pcmcia-cs source tree. 124

Listings

6.1 Wireless FIFO: enqueue a packet (pseudo code). 58

6.2 Wireless FIFO: dequeue a packet (pseudo code). 59

6.3 Wireless FIFO: purge (pseudo code). 60

6.4 Modified H-FSC example: qdisc setup 64

6.5 Modified H-FSC example: user setup 64

6.6 Modified H-FSC example: traffic types 65

7.1 TrafGen configuration file. 80

7.2 TrafGen trace file. 81

A.1 Example: Using the wireless channel simulation qdisc. 113

A.2 Configuration of link-sharing hierarchy of Scenario 1 115

A.3 Configuration of link-sharing hierarchy of Scenarios 2 and 3 117

1. Introduction

In the last 10 years the usage of data services has increased tremendously: In 1991 less
than 700,000 Internet hosts were registered, in September 2001 this number had increased
to 123.3 million. From being a research project and medium for scientists, the Internet
has become the world’s largest public information network. As a result, new types of
applications were developed (e.g. multimedia streaming) with requirements which were
not anticipated. Resource guarantees and performance assurance are not possible with the
best-effort service the Internet is based on. Therefore, starting in the 1990s, a number of
Quality of Service (QoS) architectures were developed. At the core they have an algorithm
which distributes the available resources: the packet scheduler.

A relatively new trend is the usage of wireless technology to access Internet data services.
The increasing deployment of wireless local area networks (WLANs) and emergence of
wireless Internet providers create a need for providing mechanisms for controlled sharing
of the wireless link and support of QoS. The unreliability of the wireless transmission
medium and its other characteristics make packet scheduling in the wireless environment
a challenging problem. Recent research has made much progress in the development of
algorithms which are able to guarantee the fair sharing of a wireless link and improve
throughput.

1.1 Goals
The majority of the currently discussed wireless scheduling algorithms rely on the accu-
rate knowledge of the quality of the wireless link (the channel-state) towards the mobile
hosts at the moment when a packet is transmitted. In order to be able to access this infor-
mation on time, the scheduling scheme has to be implemented at a low layer within the
protocol stack, i.e. the link layer. This makes these approaches hard to deploy using cur-
rently available hardware. Furthermore, link-sharing architectures can become quite com-
plex, which makes a more hardware independent configuration (at a higher layer which is
part of the operating system) desirable.

Therefore, this work investigates a different approach, which is based on the long-term
quality (“the average quality”) of the wireless link towards a specific mobile host. Since
this information is less time-critical and updated in relatively large intervals, the wireless

2 1. Introduction

scheduling can be implemented above the link layer. Although with this limited informa-
tion it is not possible to increase the available throughput to a mobile host by avoiding
transmissions on a bad channel (this task should still be handled by the link layer), one is
able to improve the controlled sharing of the wireless link.

The goal of this work is twofold: A hierarchical wireless link-sharing model based on the
long-term channel-state is developed, and the approach is applied to an existing wireline
scheduler. In contrast to the formerly available schedulers, the algorithm can perform a
resource-based sharing of the wireless link on currently available IEEE 802.11 hardware
[54] since it is independent of the wireless link layer. In a second step, we demonstrate
how the model can be implemented within the traffic control architecture of an existing
operating system. The correct behavior of the algorithm is verified using simulations and
by prototype results.

1.2 Organization of this Thesis

This document is organized as follows: In Chapters 2 and 3 an overview of existing QoS
architectures and currently discussed scheduling algorithms is given. Chapter 4 introduces
the wireless link-sharing model, which is applied to an existing scheduler, the Hierarchical
Fair Service Curve (H-FSC) Algorithm, in Chapter 5. Its implementation within the Linux
Traffic Control (TC) environment is described in Chapter 6. Results of the simulations
are in Chapter 7, and measurements performed using the Linux-based prototype within
a small wireless testbed are presented in Chapter 8. The main part concludes with a
summary in Chapter 9.

Additional information about implemented testbed tools and testbed configurations are
included in Appendix A. The various source code files of the prototype implementation
are described in Appendix B.

2. QoS Architectures

This chapter gives a brief overview of some currently discussed quality of service archi-
tectures for the Internet. Since guaranteeing quality of service in any QoS architecture is
based on using an appropriate scheduling algorithm, it also motivates the development of
schedulers for QoS/link-sharing and gives “the big picture” in which such an algorithm is
used. Only the basic ideas of each concept will be outlined, a more detailed overview can
be found e.g. in [62].

2.1 Integrated Services
In 1994 the Integrated Services Working Group of the Internet Engineering Task Force
(IETF) issued a memo proposing the Integrated Services (IntServ) architecture [6] as an
extension to the existing Internet protocols to support real-time services. It is based on
the per-flow reservation of resources in all routers along the path from traffic source to
destination. In this model the following steps set up a connection:

• The application specifies the characteristics of the generated traffic and the required
service.

• The network uses a routing protocol to find an optimal path to the destination.

• A reservation protocol, the Resource Reservation Protocol (RSVP) [7], is used to
make reservations in each node along that path. (A host will only accept a RSVP
request if it passes the admission control, which checks if sufficient resources are
available.)

Two kinds of service models are supported: The Guaranteed Service [51] provides strict
delay bounds and guaranteed bandwidth, whereas the Controlled Load Service [69] gives
only statistical assurances (better-than-best-effort service). Since the Guaranteed Service
requires the reservation of resources for the worst case, it leads to a less efficient utilization
of the available bandwidth. Reservations are enforced by a classifier, which determines the
flow/class a packet belongs to, and the packet scheduler, which serves each flow according
to the resource reservations. Figure 2.1 illustrates the Integrated Services components in
a node.

4 2. QoS Architectures

Data Plane

Control Plane

Agent
Reservation Setup Management Agent

Routing Database

Routing Agent

Admission Control

Traffic Control
Database

Classifier Packet Scheduler

Figure 2.1: Integrated Services reference model. [6], [62]

The main drawbacks of the IntServ architecture are the large overhead for setting up a
connection and scalability problems since each interior node needs to implement per-flow
classification and scheduling. These led to the development of alternative architectures
like DiffServ.

2.2 Differentiated Services

Motivated by the demand for a more scalable Internet QoS architecture, the development
of the Differentiated Services (DiffServ/DS) architecture [5] started in 1997. Instead of
resource management on a micro-flow1 level, it specifies a small number of forwarding
classes. Packets are classified only at the edge of the network (where the number of micro-
flows is relatively small). The class of the packet is encoded in the DS field, the former
type of service (TOS) field, of the IP packet header.

Nodes at the edge of the network are also responsible for traffic policing to protect the
network from misbehaving traffic: A meter measures the amount of traffic submitted by
each customer. The DS field of a packet is set to a specific Differentiated Services Code-
point (DSCP) by a marker depending on the conformance indicated by the meter and
the result of the classification. Packets can also be marked by applications and will be re-
marked by the edge router in case of nonconformance. Instead of marking nonconforming
packets with a different DSCP, they can be delayed by a shaper or dropped by a dropper.
Figure 2.2 shows the classification and conditioning components.

Interior nodes forward packets according to the per-hop behavior (PHB) specified for the
DSCP encoded in the packet header. Currently two PHBs have been standardized by the
IETF: Assured Forwarding (AF) [21] and Expedited Forwarding (EF) [24]. AF defines
four different forwarding classes with three drop precedences within each class. Each
class has its own bandwidth allocation, a class exceeding these resources drops packets
according to their drop priority. The EF PHB specifies a behavior similar to priority
queuing: Traffic with the DSCP for EF can preempt other traffic as long as it does not
exceed its assigned rate.

1A micro-flow is a single instance of an application to application flow, usually characterized by the
source/destination ports and addresses.

2.3. Multiprotocol Label Switching 5

Classifier Marker

Meter

Shaper/Dropper Packet Scheduler

Figure 2.2: Differentiated Services traffic classification and conditioning components.

PHBs are implemented using buffer management and packet scheduling mechanisms. The
packet scheduler distributes the available resources based on the rates specified for each
class. Depending on the implementation, it can also be responsible for parts of the traffic
policing, e.g. for shaping.

Since the Differentiated Services architecture does not require per micro-flow resource
reservation setup, and classification/conditioning is handled at the edge of the network,
it has a high scalability. On the other hand, it is harder to guarantee a specific behavior
for individual flows, because the delay/rate experienced by a flow is determined by the
aggregate traffic for a class and the amount of resources reserved for it.

2.3 Multiprotocol Label Switching

Originally developed as an alternative, efficient approach for IP over ATM, Multiprotocol
Label Switching (MPLS) [49] has evolved to an IP based QoS architecture for the Internet.
It combines the traditional datagram service with a virtual circuit approach. The basic
idea of label switching is to encode a short, fixed-length label in the packet header on
which all packet forwarding decisions are based. A label switched router (LSR) uses the
incoming label to determine next hop and outgoing label. A label switched path (LSP),
along which a packet is forwarded, is set up by using a special signaling protocol, the
label distribution protocol. Basically a LSP is a virtual circuit and allows the setup of
explicit routes for packets of a class, a critical capability for traffic-engineering. Similar
to the Differentiated Services approach, the ingress LSR at the edge of a network classifies
packets to classes and sets the initial label. MPLS also supports bandwidth reservation for
classes, again enforced by a packet/cell scheduler. Techniques for supporting Integrated
and Differentiated Services over a MPLS based core network are under development.

6 2. QoS Architectures

3. QoS Scheduling Algorithms

This chapter gives an introduction to the topic of scheduling algorithms in order to ex-
plain the foundations which this work is based on. Since nearly all scheduling schemes
for the wireless channel are derived of wireline scheduling algorithms, the most impor-
tant of these are presented first. Next, the special requirements for wireless scheduling are
shown, and some of the currently discussed algorithms for the wireless environment are
introduced. Then the different scheduling schemes are compared regarding their structure
and properties. Finally, a related set of algorithms, the hierarchical link-sharing schemes,
are presented, which allow the distribution of (excess) bandwidth according to a hierar-
chical structure. Because of limited space the algorithms will no be covered in full detail,
but the background is covered to understand the scope of this work. The reader who is
familiar with the topic of packet scheduling can skip the first sections and should continue
with Section 3.2.

The scenario assumed in the following is that of a packet scheduling algorithm operating
on a computational node which is part of a larger network (e.g. the Internet) and receives
or generates packets, which are forwarded to different destinations. These packets are
buffered in one or more queues inside the network stack. The scheduling algorithm an-
swers the question: Which packet should be sent next on the transmission medium? This
decision may be influenced by the state of the different queues, the flow or class a packet
belongs to, the QoS level a destination subscribed to, the state of the transmission medium,
etc. Figure 3.1 illustrates a simple downlink scheduling model.1

3.1 QoS Packet Scheduling in the Wireline Environment

Wireline scheduling algorithms have been developed and analyzed in the research com-
munity for some time. What makes scheduling in a wireline environment relatively easy
is that the capacity of the link is constant. Therefore the algorithms aim at distributing
this fixed bandwidth fairly among the different traffic flows – often taking into account
the different quality of service requirements agreed on at admission-time of the flow.

1Note that we do not consider the position of the QoS scheduler yet – it could e.g. be part of the net-
work protocol stack of the operating system or part of the Link Layer mechanism implemented within the
firmware of the network interface itself. This issue will be considered in Chapter 4.

8 3. QoS Scheduling Algorithms

a
a

b c
c

b
c
a

a
c

QoS Scheduler

Network
Interface

Higher Network Layers

Figure 3.1: Simple downlink scheduling model.

B C A A C A B

Time

O
ut

pu
t Q

ue
ue

C

B

A A

C

A

BIn
pu

t Q
ue

ue
s

Time

Figure 3.2: Example for FIFO/FCFS scheduling.

3.1.1 First In First Out (FIFO) / First Come First Served (FCFS)

A simple scheduling scheme called First In First Out (FIFO) or First Come First Served
(FCFS) describes what happens in a system without explicit scheduling like most of the
not QoS aware equipment in use today. All packets that arrive are enqueued in a single
queue for each outgoing network interface card (NIC). If this queue is filled completely,
all further packets are dropped until buffer space is available again. This property is called
tail dropping. Whenever the network device is ready to transmit the next packet, the first
packet in the queue, which is also called head-of-line (HOL) packet, is dequeued and
transmitted. An example for scheduling traffic from three different sessions in FIFO/FCFS
order is shown in Figure 3.2.

This “best effort” service is not suitable for providing any quality of service guarantees
since flows are not isolated and the scheduling scheme does not take any of the specific re-
quirements of a flow (e.g. delay, throughput) into account. For example, a low-throughput
real-time connection like voice traffic can be starved by a high-throughput data transfer as
shown in Figure 3.3. Furthermore, tail dropping is inadequate for delay-sensitive flows,
where packets become useless once they have been delayed in the network too long.

Scheduling schemes derived from FCFS are Last Come First Served (LCFS) and Strict
Priority. In LCFS the packet which arrived last is served first, whereas in Strict Priority it

3.1. QoS Packet Scheduling in the Wireline Environment 9

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

0 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

bi
t/s

]
(a

ve
ra

ge
d

ov
er

 w
in

do
w

 o
f

50
 p

kt
s)

time [s]

FIFO Scheduling Example − Starvation of Flow with Low Rate

 Host 1
 Host 2

Figure 3.3: A flow of Host 1 which is sent at a low rate is starved by a high-bandwidth
flow of Host 2 which starts being transmitted 5 seconds later.

exists a different queue for each packet priority. The next packet for transmission then is
selected in FCFS fashion from the first non-empty queue of the highest priority.

3.1.2 Generalized Processor Sharing (GPS)

Generalized Processor Sharing (GPS) [45] is the ideal scheduling scheme which most
other algorithms try to approximate as far as possible since GPS itself is not suitable for
implementation in a packet network.2

It is assumed that N flows are to be scheduled by the algorithm. In a GPS system every
flow i is assigned a weight φi which corresponds to its share of the total bandwidth in a
way that the following condition holds:

∑
i∈[1,N]

φi = 1 (3.1)

If the amount of service that a flow i has received in the time interval (τ1,τ2] is denoted by
Si(τ1,τ2) then for every flow i continuously backlogged3 within the interval, a GPS server
guarantees that4

Si(τ1,τ2)

S j(τ1,τ2)
≥

φi

φ j
; i, j ∈ [1,N] (3.2)

Combining Equations 3.1 and 3.2, a server of rate r serves a flow i with a guaranteed
service share of gi = φir. In addition, if there is only a subset B(τ1,τ2) ⊂ {1,2, . . . ,N}
of all flows backlogged, the remaining capacity will be distributed proportional to their
weights φi, which leads to an increased service share ginc

i for each backlogged flow:

ginc
i =

φi

∑ j∈B φ j
r; i ∈ B (3.3)

2This is caused by the fact that GPS assumes work can be done in infinitely small steps which is not the
case in a packet based network. Here the minimal amount of work is processing a packet of minimal packet
size.

3A flow is called backlogged at time τ if there are packets stored in the queue of the flow.
4Note that for Equation 3.2 only flow i is assumed to be continously backlogged within (τ1,τ2] – flow j

is allowed to have periods without demand for service.

10 3. QoS Scheduling Algorithms

C

B

C

B

AAA

A

In
pu

t Q
ue

ue
s

O
ut

pu
t Q

ue
ue

Time

Time

BB

A

C

A

C

Figure 3.4: Example for GPS scheduling with φA = 0.5,φB = 0.25,φC = 0.25.

A GPS server has the following properties, which make it very suitable for traffic schedul-
ing:

• It is work conserving.5

• A flow is guaranteed a service share independent of the amount of traffic of other
flows. The flows are isolated.

• It is very flexible. For example by assigning a small weight φi to unimportant back-
ground traffic, most of the channel capacity can be used by flows of higher priority
(and therefore with a weight φ j � φi) if they are backlogged, while the remaining
capacity will be used by the background traffic.

• The maximum delay Dmax
i a flow i experiences is bounded by the maximum queue

size Qmax and the maximum packet length Lmax to

Dmax
i =

Qmax ·Lmax

gi
= Qmax ·Lmax ·

∑ j∈[1,N] φ j

φi · r
; i ∈ [1,N] (3.4)

Figure 3.4 illustrates GPS scheduling. Packets which are on one vertical line would need
to be transmitted simultaneously on the network interface, which is not a feasible option
in reality.

3.1.3 Weighted Round Robin (WRR)

Weighted Round Robin [45], [53] is the simplest approximation of GPS for packet based
networks. It assumes that an average packet size is known. Every flow has an integer
weight wi corresponding to the service share it is supposed to get. Based on those weights
a server with the total rate r pre-computes a service schedule (frame), which serves session
i at a rate of wi

∑ j w j
r assuming the average packet size. The server then polls the queues in

sequence of the schedule, all empty queues are skipped. Figure 3.5 illustrates scheduling
traffic from three sessions in WRR fashion. Although this scheme can be implemented
very easily and requires only O(1) work to process a packet, it has several disadvantages:
When an arriving packet misses its slot in the frame, it can be delayed significantly in a

5The term work conserving describes the fact that the server is busy whenever there is a packet stored in
one of the queues. No capacity is “lost” because of the scheduling.

3.1. QoS Packet Scheduling in the Wireline Environment 11

C

B

A A

C

A

B

A A B C
pre−computed
WRR Schedule

A A A

B

C

CB A A C A A B C A B

In
pu

t Q
ue

ue
s

O
ut

pu
t Q

ue
ue

Time

Time

Figure 3.5: Example for WRR scheduling with wA = 2,wB = 1,wC = 1.

heavy loaded system since it has to wait for the next slot of the flow in the pre-computed
schedule. The algorithm is also not suitable if the average packet size is unknown or
highly varying since in the worst-case a flow can consume Lmax

Lmin
times the rate that was

assigned to it.

3.1.4 Stochastic Fair Queuing (STFQ)

In order to avoid having a separate queue for each flow as in WRR, Stochastic Fair Queu-
ing (STFQ) [33] was developed. In STFQ a hashing scheme is used to map incoming
packets to their queues. Since the number of queues is considerably less than the number
of possible flows, some flows will be assigned the same queue. Flows that collide this way
may be treated unfairly – therefore the fairness guarantees of STFQ are probabilistic. The
queues are served in round robin fashion (without taking the packet lengths into account).
STFQ also uses a buffer stealing technique in order to share the available buffers among
all queues: if all buffers are filled, the packet at the end of the longest queue is dropped.

3.1.5 Deficit Round Robin (DRR)

Because of the flaws WRR has in case of unknown or varying packet sizes, the Deficit
Round Robin (DRR) scheduling scheme was suggested in [53] as an extension to STFQ.
The basic idea is to keep track of the deficits a flow experiences during a round and to
compensate them in the next round. Therefore, when a queue was not able to send a
packet in the previous round because the packet size of its HOL packet was larger than
the assigned slot, the amount of missed service is added in the next round.

This is implemented in the following way: Each queue has a value called Quantum which
is proportional to the service share it is supposed to get and a state variable DeficitCounter.
At the beginning of each round Quantum is added to the DeficitCounter of each queue.
Then, if the HOL packet of the queue has a size less or equal to DeficitCounter, it is
processed and DeficitCounter is decreased by the packet size. In case of an empty queue
the DeficitCounter is reset to zero.

Since DRR does not provide strong latency bounds, a variant called DRR+ was intro-
duced [53] which divides the flows into two classes: latency critical and best-effort flows.
Latency critical flows are required not to send more packets than agreed on at admission
time but are guaranteed not to be delayed by more than one packet of every other latency
critical flow.

12 3. QoS Scheduling Algorithms

C

B

A A

C

A

B

B C A A C A B

Time

O
ut

pu
t Q

ue
ue

In
pu

t Q
ue

ue
s

Time

Figure 3.6: Example for WFQ scheduling with φA = 0.5,φB = 0.25,φC = 0.25 assuming
a constant packet length Lp. Although the packets would have finished in a different
sequence (B,C,A,A,A,C,B) under ideal GPS service, no packet is delayed more than Lmax

r
time units compared to its GPS departure time.

3.1.6 Weighted Fair Queuing (WFQ)

Another often cited scheduling scheme which approximates GPS on a packet level is
known as Weighted Fair Queuing (WFQ) or Packet-by-packet Generalized Processor
Sharing (PGPS) [45]. It can also be seen as the weighted version of a similar algorithm
developed based on Bit-by-bit Round robin (BR) as Fair Queuing [12], [26].

The algorithm is based on the following assumptions:

1. Packets need to be transmitted as entities.

2. The next packet to depart under GPS may not have arrived yet when the server
becomes free.

3. Thus, the server cannot be work conserving and processes the packets in increasing
order of their GPS departure time Fp.

The WFQ solution is to select that packet for transmission which would leave an ideal
GPS server next if no other packets were received. Since both GPS and PGPS are work-
conserving, they must have the same busy periods. Therefore the maximum time which a
packet can be delayed because of PGPS compared to GPS is

F̂p −Fp ≤
Lmax

r
(3.5)

where F̂p is the PGPS departure time, Fp is the GPS finish time, Lmax is the max. packet
size and r is the server’s rate. A PGPS system also does not fall behind the corresponding
GPS system by more than one packet of maximum packet size in terms of number of bits
served Wi(·) for each session i:

Wi,GPS(0,τ)−Wi,WFQ(0,τ) ≤ Lmax; i ∈ [1,N] (3.6)

WFQ scheduling of packets from three different flows is shown in Figure 3.6.

3.1. QoS Packet Scheduling in the Wireline Environment 13

Although a packet will not finish more than Lmax
r time units later, it can finish service

much earlier than in GPS. An example would be a constellation in which there are 10
flows i1, . . . , i10 with a small weight φi, each backlogged with one packet, and one flow
j with φ j = 10 · φi, which is backlogged with 10 packets. In PGPS at least 9 packets of
flow j will be processed first (with full server capacity!) before processing any packets of
flows i1,...,10 since 9 packets of flow j have an earlier GPS departure time than the packets
of flows i1, . . . , i10. In the corresponding GPS system, both would have been processed in
parallel, and the first 9 packets of flow j would have left much later. This specific issue is
addressed by Worst-Case Fair Weighted Fair Queuing (WF2Q) in Section 3.1.8.

3.1.7 Start-time Fair Queuing (SFQ)
A slightly different approach is taken by Start-time Fair Queuing (SFQ) [19], which pro-
cesses packets in order of their start-time instead of considering their finish tags. There-
fore it is better suited than WFQ for integrated service networks because it offers a smaller
average and maximum delay for low-throughput flows. It also has better fairness prop-
erties and a smaller average delay than DRR and simplifies the calculation of the virtual
time v(t).

Upon arrival, a packet p f
j of flow f is assigned a start tag S(p f

j) and a finish tag F(p f
j)

based on the arrival time of the packet A(p f
j) and the finish tag of the previous packet of

the same flow. Their computation is shown in Equations 3.7 and 3.8.

S(p f
j) = max(v(A(p f

j)),F(p f
j−1)); j ≥ 1 (3.7)

F(p f
j) =

S(p f
j)+

L(p f
j)

r f
if j ≥ 1

0 if j = 0
(3.8)

The virtual time v(t) of the server is defined as the start tag of the packet currently in
service. In an idle period it is the maximum finish tag of all packets processed before. All
packets are processed in increasing order of their start tags.

3.1.8 Worst-Case Fair Weighted Fair Queuing (WF2Q)
In order to solve the problem that the service offered by WFQ can be far ahead of the GPS
service it approximates (for an example see Section 3.1.6), it was extended to Worst-case
Fair Weighted Fair Queuing (WF2Q) [3], which is neither ahead nor behind by more than
one packet of maximum packet-size. By avoiding oscillation between high service and
low service states for a flow this way, WF2Q is also much more suitable for feedback
based congestion control algorithms.

In a WF2Q system the server selects the next packets to process only among those packets
which would have started service in the corresponding GPS system. In this group, the
packet with minimum GPS departure time is chosen.

For WF2Q the WFQ equations concerning delay and work completed for a session (Equa-
tions 3.5 and 3.6) are also valid. In addition, since a packet of flow i which leaves the
WF2Q system has at least started being processed in GPS, it can be guaranteed that a
WF2Q flow is not ahead of the corresponding GPS flow by more than one packet of
maximum packet size. WF2Q therefore is considered an optimal packet algorithm in ap-
proximation of GPS.

14 3. QoS Scheduling Algorithms

3.1.9 Worst-Case Fair Weighted Fair Queuing + (WF2Q+)

The WF2Q+ algorithm is an improved version of the WF2Q (see 3.1.8) scheduling scheme
with the same delay bounds but a lower complexity developed to support Hierarchical
GPS (H-GPS) (Section 3.4.3, [4]). This is achieved by introducing a virtual time function
VWF2Q+(t) which eliminates the need to simulate the corresponding GPS system:

VWF2Q+(t + τ) = max(VWF2Q+(t)+W (t, t + τ), min
i∈B̂(t)

(Shi(t)
i)) (3.9)

in which W (t, t + τ) denotes the total amount of service in the period, Shi(t)
i is the start tag

of the head-of-line packet of queue i, and B̂(t) is the set of backlogged flows. Since at
least one packet has a virtual start time lower than or equal to the system’s virtual time,
the algorithm is work-conserving by selecting the packet with the lowest eligible start-
time (like in WF2Q) for transmission. The second modification to the original scheme is
that WF2Q+ simplifies the calculation of the start and finish tags (Si and Fi) of a packet:
Instead of recalculating them for each packet after each transmission/packet arrival, they
are only calculated when a packet reaches the head of its queue.

With these modifications the algorithm is still able to achieve the same worst-case fairness
and bounded delay properties as WF2Q [4].

3.2 Wireless QoS Packet Scheduling
The issue of packet scheduling within a wireless network is more complicated than in
the wireline case since the wireless channel is influenced by additional factors which a
wireless scheduling mechanism needs to take into account [63]:

• location dependent errors as illustrated in Figure 3.7 (e.g. because of multipath
propagation)

• higher probability of transmission errors/error bursts (caused by noise and interfer-
ence on the radio channel)

• dynamically increasing/decreasing number of stations (hand-over)

Most wireless scheduling algorithms assume that they schedule the downstream traffic in
an access point and have full control over the wireless medium. Perfect knowledge on
the states of the uplink queues of the mobile stations and the channel condition is also
a precondition for the majority of the presented algorithms. For simulation purposes it
is common to use a two-state Markov chain model for the wireless channel known as
Gilbert-Elliot Model [14] consisting of the two states “good channel” and “bad channel”
and their transition probabilities.

Whereas in the case of a wireline network usually all stations experience the same chan-
nel quality, in the wireless network it is normal that some users have good channels while
others do not, and a fraction of time later a completely different set of users has capac-
ity available. Therefore it might be necessary to provide users which experienced error
bursts with additional channel capacity once they have good transmission conditions –
this mechanism is known as wireless compensation.

3.2. Wireless QoS Packet Scheduling 15

Point
Access

User B
User C

User A

Figure 3.7: Location dependent errors on the wireless channel. While users A and B have
the full link capacity available, user C experiences an error burst.

3.2.1 Idealized Wireless Fair Queuing (IWFQ)

One adaptation of WFQ to handle location-dependent error bursts is Idealized Wireless
Fair Queuing (IWFQ) [31], [39]. In IWFQ the error-free fluid service (GPS) for the flows
is simulated as in WFQ. Each arriving packet is assigned a start tag and a finish tag as in
SFQ (Section 3.1.7). The virtual time v(t) is being computed from the set of backlogged
flows B(t) of the error-free service in the following way:

dv(t)
dt

=
C

∑i∈B(t) ri
(3.10)

where C is the total capacity of the server and ri is the rate of an individual flow i.

The algorithm then always selects the flow with the least finish tag which perceives a
good channel for transmission. (Thus, the selection process is comparable to WFQ – by
limiting it to those packets who would have started transmission in the error-free reference
model, it could also be adapted to a WF2Q like variant.)

This scheme has an implicit wireless compensation: Since a flow which was not serviced
for a while because of channel errors will have low finish tags, it will be given prece-
dence in channel allocation for a short while once it is able to send again. Because this
behavior violates the isolation property of GPS, it is necessary to introduce an upper and a
lower bound limiting the compensation. Therefore the start and finish tags are continously
readjusted:

1. A flow i is only allowed to have an amount of Bi bits in packets with a finish tag
lower than the virtual time v(t). If this value is exceeded, the last recently arrived
packets are discarded.6

2. A flow i can lead by a maximum of li bits. If the head of line packet (of length
Li,hol) has a start tag si,hol more than li

ri
in the future, it is adjusted to

si,hol = v(t)+
li
ri

, fi,hol = si,hol +
Li,hol

ri
(3.11)

6While this behavior seems appropriate for loss-sensitive traffic it is less suitable for delay-sensitive
flows. In order to allow a flow to discard any packets from its queue without loosing the privileged access
to the channel, IWFQ decouples finish tags and packets by having a slot queue and a packet queue.

16 3. QoS Scheduling Algorithms

A A BA C CA

A A A AC B C

pre−computed
WRR Schedule

pre−computed
WRR Schedule with Spreading

Figure 3.8: In WPS spreading is used to account for error bursts on the wireless channel.
(wA = 4,wB = 1,wC = 2)

Because of the wireless compensation, packets in IWFQ can experience a higher (but
bounded by B = ∑i Bi) maximal delay than in WFQ:

dmax,IWFQ ≤ dmax,WFQ +
B
C

(3.12)

3.2.2 Wireless Packet Scheduling (WPS)

Wireless Packet Scheduling (WPS) [31] is an approximation of the IWFQ algorithm
which uses Weighted Round Robin (WRR, see 3.1.3) as its error-free reference algorithm
mainly because it is much simpler to implement. To account for the burstiness of wireless
channel errors, the basic WRR scheme was altered to use spreading of slots as illustrated
in Figure 3.8 (generating a schedule equal to WFQ when all flows are backlogged). WPS
assumes that all packets have the same size (slot), multiple slots form a frame.

WPS uses two techniques of wireless compensation:

1. intra-frame swapping: When the flow currently scheduled to send has an erroneous
channel, the algorithm tries to swap the slot with a later slot of a different flow
currently having a good channel.

2. credits/debits: A backlogged flow unable to transmit during its assigned slot which
also cannot swap slots, is assigned a credit (in bytes) if there are one or more other
flows which are able to use the slot(s). In turn their credit is decremented. As in
IWFQ both operations are bounded to a maximum credit/debit value.

The effective weight of a flow which is used when scheduling a new frame is the aggregate
of its default weight and its credit/debit, thus lagging flows will receive more service than
leading flows.

WPS uses a one-step prediction for channel estimation, predicting that the channel will
stay in that state in which it was when probed during the previous time slot.

3.2.3 Channel-Condition Independent Packet Fair Queueing (CIFQ)

The Channel-Condition Independent Packet Fair Queuing (CIF-Q) scheduling scheme is
an adaption of Start-time Fair Queuing (SFQ, see 3.1.7) for the wireless channel [41],
[42].

It was developed to provide

• short-time fairness and throughput/delay guarantees for error-free sessions

3.2. Wireless QoS Packet Scheduling 17

• long-time fairness for sessions with bounded channel error

• graceful degradation of leading flows

An algorithm with these properties is called Channel-Condition Independent Fair (CIF).

The error-free service system used as a reference in CIF-Q is Start-time Fair Queuing
(SFQ, see 3.1.7) in order to keep the implementation effort low, but any other wireline
packet fair queuing scheme could also be used. CIF-Q schedules that packet for transmis-
sion which would be served next in the error-free reference model (i.e. in SFQ the one
with the minimum start-time). In case that the selected flow is unable to transmit because
it is in error or has to give up its lead, the service is distributed to another session but it is
charged to the session which would be serviced in the reference system.7 So in any case
the virtual time of the selected flow is advanced in SFQ manner (Equation 3.8).

Thus, the scheduling algorithm is self-clocked and there is no need to continously sim-
ulate the timing of a reference system. In order to keep track of the amount of traffic
a session needs to be compensated for, a lag parameter is associated with every session
which is increased for a session that was unable to transmit and decreased when it re-
ceived additional service. Therefore, the sum over the lag parameters of all flows is alway
zero: ∑i lagi = 0.

CIF-Q also avoids giving strict priority to the compensation of lagging flows by guaran-
teeing that leading flows will always receive a minimum amount of service of (1-α) times
its service share (graceful degradation of leading flows). Excess bandwidth is distributed
proportional to the weight of a flow.

The most important parts of the CIF-Q scheduling scheme are summarized in the follow-
ing steps:

1. Select a flow i for transmission using the corresponding reference system.

2. Advance the virtual time for flow i.

3. If the flow is leading and has given at least a share of α percent for compensation
of lagging flows or it is in-sync8/lagging it is served.

4. If the selected flow is unable to send (channel error/not backlogged) or has to re-
linquish capacity for compensation the bandwidth is distributed among the lagging
flows proportional to their rate.

5. If none of the lagging flows can send, flow i gets to transmit. If it is unable to
transmit, distribute the excess bandwidth in proportion to the rates of the flows.

6. Adjust the lag variables if the flow selected is different from the flow which would
send in the reference system.

When a lagging session wants to leave, the lag variable of the other active sessions is
increased proportional to their rate so that ∑i lagi = 0 still holds. A leading session is not
allowed to leave until it has given up all its lead. In this way the algorithm has the CIF
properties and is able to bound the delay that an error-free session will experience in an
error system.

7The virtual time of that flow which would transmit in the reference system is updated.
8A flow is called in-sync when it is neither leading nor lagging compared to its error-free service.

18 3. QoS Scheduling Algorithms

3.2.4 Wireless Fair Service (WFS)

A different algorithm that also supports the CIF properties is Wireless Fair Service (WFS)
[30], which additionally decouples the bandwidth/delay requirements of flows in order
to treat error- and delay-sensitive flows differently. The scheduling scheme also avoids
disturbing flows which are in-sync because of wireless compensation if possible.

The corresponding error-free service model for WFS is an extension of WFQ (see Sec-
tion 3.1.6): Each flow is assigned a weight for rate ri and delay Φi. As in IWFQ (Sec-
tion 3.2.1), an arriving packet creates a slot in the flows slot queue which has a start tag
S(pk

i) and a finish tag F(pk
i)

S(pk
i) = max(V (A(pk

i)),S(pk−1
i)+

Lk−1
i

ri
(3.13)

F(pk
i) = S(pk

i)+
Lk

i

Φi
(3.14)

where V (A(pk
i)) is the virtual time when packet pk

i arrives and Lk−1
i is the length of the

(k−1)th packet of flow i. For the virtual time the same notion as in IWFQ (Section 3.2.1,
Equation 3.10) is used.

Of all slots whose start tag is not ahead of the current virtual time by more than the
schedulers lookahead parameter9 ρ, WFS selects the slot with the minimum finish tag for
transmission. The result is that packets will be drained into the scheduler proportional to
ri and served with rate Φi.

The separation of slots (right to access the channel) and packets (data to be transmitted)
allows any kind of packet discarding scheme at a per flow level: For error-sensitive flows
the scheduler can choose to drop all further packets once the queue is full, whereas for
delay-sensitive flows a HOL packet, which has violated its delay bounds, can be dropped
without loosing the right to access the channel.

The wireless compensation mechanism of WFS is rather complicated: Flows have a lead
counter E(i) and a lag counter G(i) which keep track of their lead/lag in slots.10 The
algorithm performs compensation according to the following rules:

1. If a flow is unable to transmit, it will try to allocate the slot first to a backlogged
lagging flow, then to a backlogged leading flow whose lead is less than the leading
bound Emax(i), then to an in-sync flow and finally to any backlogged flow. If none
of them has an error-free channel, the slot is wasted.

2. The lead/lag counter will only be modified if another flow is able to use the slot.
Therefore the sum over all E(i) is equal to the sum over all G(i) at any time.

3. A leading flow which has been chosen to relinquishing its slot to a lagging flow will
regain its slot if none of the lagging flows perceives a clean channel.

9The lookahead parameter determines how far a flow may get ahead of its error-free service. If ρ is 0
the algorithm does not allow a flow to get ahead by more than one packet (like in WF2Q), if ρ is ∞ then the
selection mechanism is equal to Earliest Deadline First (EDF).

10Since either the lead counter or the lag counter of a flow is zero, one counter would be sufficient to keep
track of the flows state. Despite this fact we chose to stay consistent with the algorithms description in [30].

3.2. Wireless QoS Packet Scheduling 19

4. If a lagging flow clears its queue (e.g. since the delay bounds were violated), its G(i)
counter is set to zero, and the E(i) counters of all leading flows will be reduced in
proportion to their lead.

5. A leading flow is forced to give up a fraction of E(i)
Emax(i)

slots for wireless compensa-
tion (graceful degradation).

6. Slots designated for wireless compensation will be distributed in a WRR scheme to
lagging flows, each flow has a compensation WRR weight of G(i).

3.2.5 Wireless Worst-case Fair Weighted Fair Queueing (W2F2Q)

As the name suggests, the W2F2Q algorithm is an adaptation of Worst-case Fair Weighted
Fair Queuing plus (W2FQ+, see Section 3.1.9) for the wireless environment. It uses the
same notion of virtual time as WF2Q+ (Equation 3.9), which avoids the need to simulate
a corresponding GPS reference system. In addition to the compensation inherited from
WF2Q+, which prefers flows recovering from an error-period since they have lower start
tags, W2F2Q uses a wireless error compensation consisting of the following components:

1. Readjusting: If L denotes the length of a packet and φi the weight of flow i, each
packet with a start tag more than L

φi
+ δi,max ahead of the current virtual time V (t)

is labeled with a start tag of V (t)+ L
φi

+δi,max (bounds leading flows). Each packet

with a start tag more than L
φi

+ γi,max behind the current virtual time is assigned a

start tag of V (t)− L
φi

+ γi,max (bounds compensation received by lagging flows).

2. Dynamic Graceful Degradation: Instead of using a linear graceful degradation of
leading backlogged flows as in CIF-Q (see Section 3.2.3), W2F2Q uses an exponen-
tial decrease. A leading flow which is more than one packet transmission length L

φi

ahead will yield (1−α) of its service share to non leading flows. The parameter α
depends on the number of lagging flows:

α =
1−αmin

e−1
e1−x +

eαmin −1
e−1

(3.15)

where x is the relation of combined weights of the flows in-sync to that of the flows
not in-sync: x =

∑j in-sync φ j

∑j not in-sync φ j
.

3. Handling of Unbacklogging in Lagging State: In the case that a lagging flow be-
comes unbacklogged, meaning that it does not need as much service as the amount
of lagging it has accumulated, the remaining lag is distributed to the other flows.
This is done in proportion to their weight as in CIF-Q (Section 3.2.3), with the ex-
ception that the start tag for each packet is decreased, instead of recalculating a lag
variable.

3.2.6 Server Based Fairness Approach (SBFA)

A generalized approach for adapting wireline packet fair queuing algorithms to the wire-
less domain was developed as Server Based Fairness Approach (SBFA) [48]. It intro-
duces the concept of a long-term fairness server (LTFS), which shares the bandwidth with

20 3. QoS Scheduling Algorithms

the other sessions and is responsible for providing additional capacity to them in order
to maintain the long-term fairness guarantees. SBFA also uses separate slot and packet
queues as known from WFS (Section 3.2.4). Whenever a flow i is forced to defer the
transmission of a packet because of an erroneous channel, a slot is inserted in the LTFS
slot queue with tag i. Later, when the scheduler serves the queue of the LTFS, the slot
is dequeued and a packet of session i is transmitted. In this way, the LTFS distributes an
extra quantum of compensation bandwidth to lagging flows without degradation of the
other flows. The same procedure happens if a flow needs a retransmission of a packet.

Since sessions associated with a specific LTFS share its bandwidth, it is beneficial to have
more than one LTFS and assign sessions with similar requirements to the same LTFS. For
example, one LTFS could be used for real-time traffic and a different one for interactive
traffic (e.g. WWW).

3.2.7 Channel-State Independent Wireless Fair Queueing (CS-WFQ)

A quite different approach to wireless packet scheduling is taken by the Channel-State
Independent Wireless Fair Queuing (CS-WFQ) algorithm [29]. Whereas the schemes pre-
sented before use a two-state one-step-prediction for the channel-state and try to maximize
throughput for users experiencing a “good” channel,11 CS-WFQ includes mechanisms in
order to deal with channel errors (such as FEC) taking into account multiple levels of
channel quality and tries to reach equal goodput at the terminal side. CS-WFQ is based
on Start-time Fair Queuing (SFQ, see 3.1.7), which is extended in a way that each flow
has a time varying service share. When the channel is in a bad condition, the service share
of the session is increased. This variation is bounded according to the QoS requirements
of a flow: The higher the QoS level of a flow, the larger are the bounds in which the share
is allowed to vary.

Therefore, a flow admitted to the CS-WFQ scheduler is assigned two values at call-
admission time: a rate proportional fair share φi as in most wireline schedulers and a
bound Cth

i for the instantaneous virtual goodput Ci(t) of a flow. The scheduler will only
compensate for a bad channel condition (e.g. by providing more bandwidth for FEC or
ARQ schemes) as long as the channel quality results in a Ci(t) better or equal to Cth

i . The
time-varying service share ψi is computed as

ψi =

{ φi
Ci(t)

if Ci(t) ≥Cth
i

φi

Cth
i

otherwise
(3.16)

and thus limited by the threshold Cth
i .

3.2.8 Wireless Multiclass Priority Fair Queuing (MPFQ)

The Multiclass Priority Fair Queuing (MPFQ), which was presented in [34], [36], [37]
and later improved with a wireless compensation mechanism in [8] and [35], combines
a class-based approach with flow based scheduling. It introduces a mapping of the ATM
traffic classes in the wireline domain to the wireless channel which assigns each traffic
class a specific scheduler (Table 3.2.8). Since MPFQ strictly separates the priorities, it
can be seen as a combination of different independent schedulers.

11This is referred to as totalitarian situation in [29] in contrast to an “egalitarian system” which tries to
provide equal goodput for each user.

3.2. Wireless QoS Packet Scheduling 21

ATM class(es) Priority Scheduling

CBR 1 Wireless Packet Scheduling (see 3.2.2)
(real-time, constant bit-rate)

rtVBR 2 Wireless Packet Scheduling (see 3.2.2)
(real-time, variable bit-rate)
GFR, nrtVBR, ABR-MCR 3 Weighted Round Robin (see 3.1.3)

(non real-time, guaranteed bit-rate)
ABR-rest 4 Recirculating FIFO (see 3.1.1)

(best-effort)
UBR 5 FIFO (see 3.1.1)

(pure best-effort)

Table 3.1: MPFQ mapping of ATM classes to priorities/schedulers.

The two real-time classes CBR and rtVBR both use a WPS algorithm with separate slot
and packet queues for each flow. Thus, flows may drop packets according to different
discard policies without losing the right to access the channel (decoupling of access-right
and payload as in IWFQ, 3.2.1). The CBR traffic is given a higher priority than rtVBR
traffic in order to provide a lower delay bound for this traffic class. The weight of a
CBR/rtVBR flow is determined by φn = 1

maxCT D so that it is inversely proportional to the
maximum tolerated delay maxCT D of the flow.12

The non-real-time classes with guaranteed bandwidth (including the minimum guaranteed
rate of a ABR flow) are scheduled by a WRR scheduler at a medium priority level, since
the delay requirements are not that tight for these classes. The WRR algorithm serves the
flows according to their Minimum Cell Rate (MCR).

The fourth priority in the system is used for that amount of ABR traffic which exceeds
the MCR. It uses a single, recirculating slot queue for all ABR flows. Since a slot con-
tains only a pointer to the HOL packet of a queue, a slot of a packet which could not
be transmitted due to channel errors can simply be reinserted at the back of the queue.
The lowest priority is used for traffic of unspecified bit-rate (UBR), which is serviced in a
single best-effort FIFO queue without any wireless compensation.

In the error-free case, traffic in the first priority level will have the same delay bounds
as the WPS scheduling algorithm. The rtVBR traffic will additionally have to wait until
all flows of priority 1 have cleared their queues, but since proper admission control is
assumed, CBR flows will not have more than one packet in their queue.

In order to be able to determine the lead or lag of a flow, MFPQ keeps track of two time
variables: a current virtual time and a shadow virtual time. When a packet is skipped
because the channel is in a bad state, the virtual time advances to the time of the packet
transmitted instead. The shadow virtual time is updated to the value of the packet that
should have been sent. Therefore the shadow virtual time keeps track of the time in a
corresponding error-free system, and the lead/lag of a flow is the difference of its HOL
packet’s tag to the shadow virtual time.

12MPFQ assumes that monitoring and shaping will occur outside of the scheduler. Therfore, e.g. a CBR
flow will never exceed its specified rate.

22 3. QoS Scheduling Algorithms

Wireless compensation in MPFQ is also class-based. For CBR traffic a lagging flow is
selected from a WRR schedule of lagging flows, where each flow has a weight propor-
tional to its lag. The rtVBR traffic is compensated by forcing the leading flows to give up
a fraction of their bandwidth to the flow with the earliest finish time among all flows. For
traffic of priority 3 the flow with the largest lag is chosen to receive compensation. The
ABR traffic is compensated by reinsertion of the slot which could not be transmitted in
the recirculating packet queue. For UBR traffic no compensation is done at all.

3.3 Comparison of Scheduling Algorithms

This section compares the presented scheduling algorithms regarding different parameters
and components. It provides a summary of this chapter and illustrates which algorithms
have certain properties in common. On the other hand, the listed aspects are rather arbi-
trary and cannot explain the capabilities of an algorithm in detail.

The following aspects are compared:

1. What is the algorithm’s notion of (virtual) time? (Is a corresponding error-free
reference-system simulated? How is the time variable updated?)

2. Are flows guaranteed a certain bandwidth (in the error-free case)? Does the algo-
rithm provide separation/isolation of flows? In case of wireless scheduling algo-
rithms this can be limited because of wireless compensation.

3. Does the algorithm provide wireless compensation?

4. Is the compensation of a flow which was unable to transmit in the past because of a
bad channel bounded?

5. Are leading flows gracefully degraded?

6. Does the algorithm differentiate between slots and packets of a flow?

7. How complex is the implementation of the algorithm?

8. How high is the computational effort per scheduled packet?

3.3. Comparison of Scheduling Algorithms 23

Ta
bl

e
3.

2:
C

om
pa

ri
so

n
of

sc
he

du
lin

g
al

go
ri

th
m

s.

A
lg

or
ith

m
V

ir
tu

al
G

ua
ra

nt
ee

d
C

om
pe

n-
B

ou
nd

ed
G

ra
ce

fu
l

Sl
ot

Im
pl

.
C

om
p.

A
dd

iti
on

al
T

im
e

B
an

dw
id

th
sa

tio
n

C
om

p.
D

eg
ra

de
d

Q
ue

ue
E

ff
or

t
E

ff
or

t
C

om
m

en
ts

W
ir

el
in

e
Sc

he
du

lin
g

A
lg

or
it

hm
s

FI
FO

no
no

-
-

-
-

lo
w

lo
w

no
no

tio
n

of
flo

w
s

G
PS

no
ye

s
-

-
-

-
∞

∞
id

ea
la

lg
or

ith
m

W
R

R
no

(y
es

)
-

-
-

-
m

ed
iu

m
m

ed
iu

m
ba

nd
w

id
th

va
ri

es
if

pk
t-

le
ng

th
no

tc
on

st
.

ST
FQ

no
pr

ob
a-

-
-

-
-

m
ed

iu
m

lo
w

ba
nd

w
id

th
va

ri
es

if
bi

lis
tic

pk
t-

le
ng

th
no

tc
on

st
.

D
R

R
no

pr
ob

a-
-

-
-

-
m

ed
iu

m
lo

w
ta

ke
s

pa
ck

et
le

ng
th

bi
lis

tic
in

to
ac

co
un

t
W

FQ
G

PS
re

f.
ye

s
-

-
-

-
hi

gh
hi

gh
-

SF
Q

st
ar

t-
ta

g
of

ye
s

-
-

-
-

hi
gh

m
ed

iu
m

-
pk

ti
n

se
rv

ic
e

W
F2

Q
G

PS
re

f.
ye

s
-

-
-

-
hi

gh
hi

gh
-

W
F2

Q
+

m
in

.
st

ar
t-

ta
g

ye
s

-
-

-
-

hi
gh

m
ed

iu
m

id
ea

lG
PS

ap
pr

ox
.

W
ir

el
es

s
Sc

he
du

lin
g

A
lg

or
it

hm
s

IW
FQ

G
PS

re
f.

ye
s

im
pl

ic
it

no
no

no
hi

gh
hi

gh
-

W
PS

W
R

R
re

f.
ye

s
ye

s
no

no
no

hi
gh

m
ed

iu
m

-
C

IF
-Q

SF
Q

re
f.

ye
s

ye
s

ye
s

ye
s

no
hi

gh
m

ed
iu

m
-

W
FS

W
FQ

re
f.

ye
s

ye
s

ye
s

ye
s

ye
s

hi
gh

m
ed

iu
m

-
W

2
F2

Q
m

in
.

st
ar

t-
ta

g
ye

s
ye

s
ye

s
ye

s
no

hi
gh

m
ed

iu
m

-
SB

FA
de

pe
nd

s
ye

s
LT

FS
ye

s
ye

s
ye

s
hi

gh
m

ed
iu

m
ge

ne
ri

c
ap

pr
oa

ch
to

ex
te

nd
w

ir
el

in
e

al
g.

C
S-

W
FQ

SF
Q

re
f.

ye
s

ye
s

ye
s

ye
s

no
hi

gh
m

ed
iu

m
eg

al
ita

ri
an

op
tim

iz
at

io
n

M
PF

Q
cl

as
s

cl
as

s
ye

s
ye

s
no

cl
as

s
hi

gh
m

ed
iu

m
co

m
bi

ne
s

se
ve

ra
l

de
pe

nd
en

t
de

pe
nd

en
t

de
pe

nd
en

t
al

go
ri

th
m

s

24 3. QoS Scheduling Algorithms

Link

Company
 A

audio wwwftp

Company
 B

video ftp www

1 Mbps 1 Mbps

leaf class

4 Mbps

5 Mbpsinterior class

10 Mbps

5 Mbps

3 Mbps 0 Mbps 1 Mbps

Figure 3.9: Link-sharing between two companies and their traffic classes.

3.4 Hierarchical Link-Sharing Algorithms
Very similar to the algorithms presented in the previous two sections are hierarchical link-
sharing algorithms, which allow packet scheduling based on a hierarchical link-sharing
structure. A special focus of these algorithms is the sharing of excess bandwidth, which –
instead of simply being distributed proportional to the bandwidth share of a flow/class13 –
is widely configurable. For example, in the situation that a link is shared by two customers,
bandwidth unused by one traffic class of a customer will first be available to other traffic
classes of the same customer. Only if they do not have sufficient demand, the rest of
the excess bandwidth is available to the other customer. This section gives a very brief
overview of the two mainly used link-sharing algorithms: Class Based Queuing (CBQ),
including a variant developed for wireless networks, and the Hierarchical Fair Service
Curve Algorithm (H-FSC).

3.4.1 Class Based Queuing (CBQ)

The class based queuing algorithm (CBQ) [17] presents a solution for unified schedul-
ing for link-sharing and real-time purposes. It isolates real-time and best-effort traffic by
allowing the separation of traffic in different traffic classes which are then treated accord-
ing to their requirements, e.g. by giving priority to real-time traffic. Floyd and Jacobsen
also develop a model for hierarchical link-sharing and show how the class based queuing
algorithm can be used to set up hierarchical link-sharing structures which allow the con-
trolled distribution of excess bandwidth. Although CBQ has the concept of using a gen-
eral scheduler, which is used in the absence of congestion, and a link-sharing scheduler
for rate-limiting classes, most implementations implement both mechanisms in a single
(often WRR/DRR) scheduler. Furthermore, an estimator keeps track of the bandwidth a
class is receiving. This is done by calculating an exponentially weighted moving average
over the discrepancy between the actual inter-departure time of two packets of a class to
the inter-departure time corresponding to the specified rate of the class.

An example for link-sharing is shown in Figure 3.9, where a 10 Mbps link is shared by
two companies. In times of congestion, each company should get the allocated 5 Mbps
over a relevant time-frame, and within a company’s share the bandwidth is distributed to

13In the following, the term class is used for a set of (micro-)flows sharing a specific property. A link-
sharing class does not necessarily correspond to a specific QoS class, e.g. in Figure 3.9 the “Company A”
class contains flows with various different QoS requirements but all share the property that they are to/from
hosts of Company A.

3.4. Hierarchical Link-Sharing Algorithms 25

Class Characteristic Definition

regulated Packets of the class are scheduled by the link-sharing scheduler.
unregulated Packets of the class are scheduled by the general scheduler.

overlimit The class has recently used more than its allocated bandwidth.
underlimit The class has received less than its bandwidth-share.

at-limit The class is neither over- nor underlimit.
unsatisfied A leaf class which is underlimit and has persistent backlog or

an interior class which is underlimit and has a child class with a
persistent backlog.

satisfied A class which is not unsatisfied.
exempt The class will never be regulated.

bounded The class is never allowed to borrow from ancestor classes.
isolated A class which does not allow non-descendant classes to bor-

row excess bandwidth and that does not borrow bandwidth from
other classes.

Table 3.3: Definition of class charateristics in CBQ.

the different traffic classes. If a leaf class has no rate assigned to it (e.g. the ftp traffic of
Company B), it is not guaranteed any bandwidth at times of congestion. A list of class
characteristics is shown in Table 3.3.

Floyd and Van Jacobsen define the following link-sharing goals:

1. Each interior or leaf class should receive roughly its allocated link-sharing band-
width over appropriate time intervals, given sufficient demand.

2. If all leaf and interior classes with sufficient demand have received at least their
allocated link-sharing bandwidth, the distribution of any ’excess’ bandwidth should
not be arbitrary, but should follow some set of reasonable guidelines.

Following these goals, a set of formal link-sharing guidelines14 is derived, which can be
used to implement the desired behavior:

1. A class can continue unregulated if one of the following conditions hold:

• The class is not overlimit, or

• the class has a not-overlimit ancestor at level i and the link-sharing structure
has no unsatisfied classes at levels lower than i.

Otherwise, the class will be regulated by the link-sharing scheduler.

2. A regulated class will continue to be regulated until one of the following conditions
hold:

• The class is underlimit, or

14Actually the listed guidelines are called alternate link-sharing guidelines in [17] since they are a vari-
ant of the formal link-sharing guidelines which avoids oscillation of a class between the regulated and
unregulated state.

26 3. QoS Scheduling Algorithms

• The class has an underlimit ancestor at level i, and the link-sharing structure
has no unsatisfied classes at levels lower than i.

Ancestor-Only link-sharing and Top Level link-sharing are two approximations to these
formal link-sharing guidelines: In Ancester-Only link-sharing a class is only allowed to
continue unregulated if it is not overlimit or if it has an underlimit ancestor. In Top Level
link-sharing a Top Level variable is used in order to determine if a class may borrow
bandwidth. A class must not be overlimit or it has to have an underlimit ancestor whose
level is at most Top Level for not being regulated. The heuristics proposed by Floyd and
Van Jacobsen for setting the Top Level variable are:

1. If a packet arrives for a not-overlimit class, Top Level is set to 1.

2. If Top Level is i, and a packet arrives for an overlimit class with an underlimit parent
at a lower level than i (say j), then Top Level is set to j.

3. After a packet is sent from a class, and that class now either has an empty queue or
is unable to continue unregulated, then Top Level is set to Infinity.

Top Level link-sharing has an additional overhead for maintaining the Top Level variable,
but approximates the ideal link-sharing guidelines closer than Ancestor-Only link-sharing.

For scheduling real-time traffic, CBQ allows the usage of different priorities for classes,
which is able the reduce the delay for delay-sensitive traffic [16], [17]. Despite this fact,
one major disadvantage of CBQ is the coupling of rate and delay within one priority class.

3.4.2 Enhanced Class-Based Queuing with Channel-State Dependent
Packet Scheduling (CBQ+CSDPS)

In [56] the CBQ scheme is extended for wireless link-sharing by making it suitable for
variable rate links and combining it with Channel-State Dependent Packet Scheduling
(CSDPS). The approach is to use the RTS-CTS handshake for sensing the quality of the
link to a specific destination. If the link is in a “bad” state then a packet to a different
destination is selected, thus avoiding the head-of-line blocking problem.

In addition, the scheduler keeps track of the goodness of each link by using a parameter
g, which is increased inversely proportional to the number of RTS-CTS attempts which
were done before successfully detecting a good link. The idea is that on a link which had
good quality in the past, one is more likely to detect a good link at a later time. Therefore,
the scheduler probes each destination up to g times – if a “good” channel is detected after
less then g probes, the parameter is increased, if no CTS is received after g probes, it is
decreased.

Also, the estimator component of CBQ is modified so that a class is unsatisfied if it has
not received the allocated percentage of the effective throughput, thus taking the variable
rate of the wireless link into account. Another modification of the CBQ algorithm is
that a restricted class is allowed to transmit even if unsatisfied classes exist, in case that
all of those unsatisfied classes experience a “bad” link state. Simulations show that by
introducing these changes, the algorithm is able to achieve a higher throughput and a
distribution of the goodput according to the allocated shares in a wireless environment.

3.4. Hierarchical Link-Sharing Algorithms 27

d d d d2,1 2,2 2,3 2,4

Se
rv

ic
e

[b
its

]

Se
rv

ic
e

[b
its

]

time [ms] time [ms]

time [ms]

Se
rv

ic
e

[b
its

]

Service curve of ftp sessionService curve of video session

time [ms]

Se
rv

ic
e

[b
its

]

d d d d1,1 1,2 1,3 1,4

service curve

data enqueued

Packet deadline computation using service curves

Figure 3.10: An example for a service curve of a video and a FTP session (di j denotes
the deadline of the j-th packet of flow i). The (interactive) video session requires a low
delay at a moderate rate, whereas the FTP session is guaranteed a high rate but with a
higher delay. [58]

3.4.3 Hierarchical Fair Service Curve (H-FSC)

A link-sharing scheduler which decouples delay and bandwidth allocation is the Hierar-
chical Fair Service Curve (H-FSC) Algorithm [58]. H-FSC15 is based on the concept of
a service curve, which defines the QoS requirements of a traffic class or single session in
terms of bandwidth and priority (delay). A session i is guaranteed a service curve Si(t) if
the following equation holds

Si(t2 − t1) ≤ wi(t1, t2); t1 < t2 (3.17)

in which t2 is an arbitrary packet departure time at which the session is backlogged, t1

is the start of this backlogged period and wi(t1, t2) is the amount of service received by
session i in the interval (t1, t2]. Usually only linear or piece-wise linear service curves are
used for simplicity. A concave16 service curve results in a lower average and worst case
delay than a convex curve with the same asymptotic rate. Figure 3.10 shows an example
in which rate and delay are decoupled.

However, a server can only guarantee all service curves Si(t) if the service S(t) it provides
is always larger or equal to their sum:

S(t) ≥ ∑
i

Si(t) (3.18)

In H-FSC each class in the hierarchy has a service curve associated with it. Excess band-
width is distributed according to the service curves and a class which received excess

15This algorithm is presented in more detail because it serves as basis for the wireless algorithm developed
in Chapter 5.

16A service curve is concave if its second derivative is non-positive and not the constant function zero.
Analogously, it is convex if its second derivative is positive and not the constant function zero.

28 3. QoS Scheduling Algorithms

service will not be punished later (fairness properties). However, in their paper [58] Sto-
ica et. al. prove that with non-linear service curves (which are necessary if bandwidth
and delay properties are to be decoupled) it is impossible to avoid periods in which the
scheduler is unable to guarantee the service curves of all classes, or it is not able to guar-
antee both the service curves and fairness properties. Therefore, the H-FSC algorithm
only guarantees the service curves of leaf classes and tries to minimize the difference be-
tween the service an interior class receives and the amount it is allocated according to the
fairness properties.

This is achieved by using two different criteria for selecting packets: A real-time criterion,
which is only used when the danger exists that the service curve of a leaf class is violated,
and a link-sharing criterion, which determines the next packet otherwise. Therefore, each
leaf class has a triplet (ei,di,vi) associated with it, which represents the eligible time, the
deadline and the virtual time. An interior class only maintains its virtual time vi. If, at
time t, a leaf class with ei < t exists, there is danger of violating a service curve and the
real-time criterion is used to select the packet with the minimal eligible time. Otherwise,
the link-sharing criterion searches the packet with the minimum virtual time, starting at
the root class.

Since the virtual time of a class represents the normalized amount of work received by
a class, the goal of the link-sharing criterion is to minimize the difference between the
virtual time vi of a class and that of any sibling. For each leaf class the algorithm also
maintains an eligible curve Ei(ak

i ; ·) and a deadline curve Di(ak
i ; ·), where ak

i is the start of
active period number k of class i, and a variable ci, which is the amount of service a class
received under the real-time criterion.

The deadline curve is initialized to the corresponding service curve of the class. At each
point in time ak

i when the class becomes active, the deadline curve is updated according
to Equation 3.19, which by taking into account only the service received under real-time
criterion does not punish a session for using excess service.

Di(a
k
i ; t) = min(Di(a

k−1
i ; t),Si(t −ak

i)+ ci(a
k
i)); t ≥ ak

i (3.19)

If ai is the last time that session i has become active, then the eligible curve represents the
maximum amount of service a class can receive under real-time criterion if it is continu-
ously backlogged in the interval (ai, t] and is defined as17

Ei(ai; t) = Di(ai; t)+ [max
t́>t

(Di(ai; t́)−Di(ai; t)−Si(t́ − t))]+; t ≥ ai (3.20)

The real-time criterion guarantees that the deadline of a packet is not missed by more than
the time needed to transmit a packet of the maximum size.

The system’s virtual time vs
i is computed as the mean of the minimal and maximal virtual

times of any class by vs
i = (vi,min + vi,max)/2. Instead of keeping track of the virtual time

vi of each class, the algorithm uses a virtual curve Vi which is the inverse function of vi

and computed as

Vi(a
k
i ;v) = min(Vi(a

k−1
i ;v),Si(v− vs

p(i)(a
k
i))+wi(a

k
i)); v ≥ vs

p(i)(a
k
i) (3.21)

where v is the virtual time, wi(ak
k) is equal to the total amount of service received and

vs
p(i)(a

k
i) is the virtual time of the parent class.

17. . . where [x]+ denotes max(x,0).

3.4. Hierarchical Link-Sharing Algorithms 29

In [40] the authors also demonstrate an approach how best-effort traffic scheduling can
be optimized using H-FSC, avoiding the preferential treatment of long-term continuously
backlogged traffic (e.g. file transfers) compared to bursty best-effort traffic (e.g. WWW).

30 3. QoS Scheduling Algorithms

4. Hierarchical Link-Sharing in
Wireless LANs

In local area networks based on the IEEE LAN standards, mechanisms for hierarchical
link-sharing and fluid fair queuing are implemented as part of the operating system or
device driver, simply because the 802.X MAC and LLC do not provide the necessary
mechanisms for a controlled sharing of the available bandwidth.1 An advantage, if a
hierarchical link-sharing scheduler such as Class Based Queuing (CBQ, see Section 3.4.1)
or the Hierarchical Fair Service Curve Algorithm (H-FSC, Section 3.4.3) is part of the
operating system, is its easy and flexible configurability and independence of specific
networking hardware.

An important observation is that by implementing these mechanisms above the MAC
layer, the scheduler does not see any MAC layer retransmissions and therefore schedules
expected goodput. Since the error probability in a wired LAN is low and all stations
experience the same link quality, the assumption that goodput is equal to throughput does
not create unfairness. The opposite is true in case of a wireless LAN: As mentioned
in Section 3.2, the quality of the wireless link is time varying and the error probability is
significantly higher, which results in a larger number of retransmissions, need for adaptive
modulation, etc. And since in this case the link quality is location-dependent, scheduling
equal goodput to two mobile stations can lead to completely different shares of capacity
of the wireless link. While this is desirable in some cases (e.g. in order to be able to
compensate a user for a bad link quality), it might be inefficient/unwanted in others.2

4.1 Problem Example
In order to illustrate the problem, this section presents a simplified example scenario,
which will also be used later on to show the benefits of our approach: An Internet Service

1An exception is the definition of different traffic classes in the ANSI/IEEE 802.1D Standard, 1998
Edition, Appendix H 2.2, which assigns different priorities to different traffic types. Although the future
IEEE 802.11e standard will probably support these priorities, priorization does not reduce the need for
controlled link-sharing.

2An obvious solution to this problem would be to avoid MAC layer retransmissions and adaptive mod-
ulation completely. This is not desirable since most error bursts on the wireless medium have a very short
duration [64], [65] and are best handled by MAC layer retransmissions.

32 4. Hierarchical Link-Sharing in Wireless LANs

Provider (ISP) offers services using currently available (e.g. IEEE 802.11) technology
on a wireless link with a total capacity3 of 6 Mbit/s. The ISP has installed an access
point (AP) in order to serve two different companies: Company A has bought 85% of the
capacity of the AP for $85 per month and Company B the remaining 15% for $15. For
simplicity, it is assumed that each company has only one mobile station using the access
point: Mobile Station 1 (MS 1) belongs to Company A and Mobile Station 2 (MS 2) to
Company B. The correct sharing of the (downlink) capacity is to be enforced at the access
point using a link-sharing scheduler.

In the following, an arbitrary variable gi is assumed which is proportional to the quality
of the wireless link to a mobile station i (a formal definition follows in the next section).
The maximal value of gi is 1, which corresponds to a perfect link, and its minimal value
is 0, meaning that the correct transmission of information is impossible on this link with
the used wireless technology. In general, a decreasing link quality means that the rate
at which goodput can be sent to a mobile station is reduced. This can, for example, be
caused by a higher probability for corrupted packets or by a physical layer which chooses
a more robust modulation in order to adapt to the link quality.

For a link-sharing scheduler implemented above the MAC layer, the only visible effect, if
gi for a specific mobile station i decreases, is a reduction of the total system goodput. The
reason is that it is not aware of details as the modulation technique or average number of
retransmissions for a mobile station. Therefore the total system goodput will be shared
by the mobile stations in a fixed ratio, which is independent of the link qualities gi for the
different mobile stations. In the example scenario 85% of the total system goodput would
be scheduled for MS 1 and 15% for MS 2.

If the total amount of resources per time unit available at the access point is assumed to be
a constant value (e.g. equal to the capacity of the AP), a decrease of gi causes an increase
of resources needed to transmit an unit of goodput. This leads to unfairness in terms of
costs per used resource as soon as one assumes different values of gi for each mobile
station i.

Figure 4.1 shows the results of a simulation4 of the example scenario, where the quality
of the wireless link to MS 2 gms2 varies while MS 1 has a constant value of gms1 = 1.
As shown in Figure 4.1(b), the relative share of MS 2 of the resources increases and the
goodput for both mobile stations decreases (Figure 4.1(a)). Figure 4.1(c) illustrates the
influence of gms2 on the amount paid per consumed resource for each mobile station.

4.2 Ratio of Goodput to Consumed Resources

In order to be able to describe the effects of varying resource consumption in wireless
LANs, the terms used in this context will be defined in the following. Only the downlink
scheduling within an AP to N mobile stations is considered. (Usually a user works on
exactly one mobile station, therefore the terms user and mobile station are used synony-
mously.)

3Although this is an arbitrary value, it is close to the maximal amount of goodput one usually achieves
using 11 MBit/s 802.11b WLAN cards.

4The results were obtained using a simulation of Class-Based Queuing[17] with a separate class for
each company. For more details on the simulation environment used refer to Chapter 6. Furthermore, an
analytical description of the observed behavior will be given in Section 4.3.

4.2. Ratio of Goodput to Consumed Resources 33

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10

G
oo

dp
ut

 [
kb

it/
s]

1/g of Mobile Station 2

Mobile Station 1, Simulation
Mobile Station 2, Simulation

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10

G
oo

dp
ut

 [
kb

it/
s]

1/g of Mobile Station 2

Mobile Station 2, Analytical Result
Mobile Station 1, Analytical Result

(a) The goodput of both stations is reduced. . .

Mobile Station 1
Mobile Station 2

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

R
es

ou
rc

e
C

on
su

m
pt

io
n

[P
er

ce
nt

]

1/g of Mobile Station 2

(b) because MS 2 consumes an increasing share
of the available resources.

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5 6 7 8 9 10

[U
SD

/(
kb

it/
s)

]

1/g of Mobile Station 2

Mobile Station 1, Simulation
Mobile Station 2, Simulation

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5 6 7 8 9 10

[U
SD

/(
kb

it/
s)

]

1/g of Mobile Station 2

Mobile Station 1, Analytical Result
Mobile Station 2, Analytical Result

A
m

ou
nt

 P
ai

d
pe

r
1

kb
it/

s
C

on
su

m
ed

 R
es

ou
rc

e

(c) The amount paid per consumed resource by
the customer with a perfect link (MS 1, gms1 ≈
1) and the customer with decreasing link quality
(MS 2) diverge.

Figure 4.1: Effect of decreasing link quality of MS 2 (1
gms2

increases) on both mobile
stations.

34 4. Hierarchical Link-Sharing in Wireless LANs

Since a wireless link layer correcting the majority of the errors is assumed, the term good-
put is used for all data seen above the link layer. The rate of goodput to a mobile station i
at time t is denoted by bgood,i(t), and the total goodput rate Bgood(t) for an AP is:

Bgood(t) = ∑
1≤i≤N

bgood,i(t) (4.1)

As mentioned, the amount of resources available at the access point is assumed to be
constant, e.g. determined by the width of the frequency band reserved. Depending on the
used wireless technology, a certain maximum rate at which the AP can send data to the
mobile stations (given a perfect wireless channel) corresponds to this amount of resources.
This maximum rate is called raw throughput Braw of the AP. Each mobile station has a
time varying share braw,i(t) of the constant total raw throughput:

Braw ≥ ∑
1≤i≤N

braw,i(t) (4.2)

In an overload condition all resources are consumed and therefore the sum of the individ-
ual shares is equal to Braw.

One can now define a goodput to raw throughput ratio (GTR) for an active mobile station
i as the amount of goodput achieved at time t with its share of raw throughput:

gi(t) =
bgood,i(t)

braw,i(t)
(4.3)

This ratio enables a scheduler to combine resource-based and goodput-based scheduling:
The idea is that an entity, the Wireless Channel Monitor, which is either part of the data
link layer, the lower OS layers or even the scheduler itself (a possible implementation is
presented in Chapter 8), keeps a windowed average of the raw throughput needed per byte
of goodput for each mobile station. The GTR is then used by the scheduler in order to
estimate the needed resources when handing data for a specific destination to the lower
layers.

The advantage of this approach5 is that it allows an unified consideration of the effects of
various data link and physical layer techniques as:

• retransmissions

• forward error control (FEC)

• adaptive modulation

4.3 Purely Goodput-Based Wireless Link Sharing
This section presents a brief mathematical analysis of the observed behavior in the ex-
ample scenario (Section 4.1). Most implementations of a link-sharing scheduler for CBQ

5In [10], Choi develops a bandwidth management algorithm for adaptive QoS in a CDMA system which
is based on the bandwidth usage efficiency of a connection, a property similar to the GTR. However, he
assumes that only a number of discrete values can occur for this property and uses a set of adaptation rules
in order to react to changes.

4.3. Purely Goodput-Based Wireless Link Sharing 35

are based on the DRR algorithm (Sections 3.1.3, 3.1.5). During the configuration process
of the scheduler, the rates assigned to different classes in the hierarchy are mapped to
weights wi for the DRR scheduler. These are used to compute a round-robin schedule,
which distributes the available bandwidth proportional to the weights. Therefore, if the
bandwidth available for the root class is constant and the same as assumed during the
configuration process, each class will get its specified rate.

In case that the algorithm is scheduling for a wireless network interface, the available
downlink bandwidth (in terms of goodput) and the resources necessary to transmit to
different mobile stations vary. For simplicity, it is assumed that scheduling is done for
N mobile stations belonging to N separate classes, which are all at the same level of
the hierarchy. Then Equation 4.4 must hold at any point in time where active classes
exist, since the CBQ scheduler is work conserving and distributes the available bandwidth
completely to the backlogged classes.

∑
1≤i≤N

bgood,i(t)

gi(t)
= Braw (4.4)

Using the pre-computed WRR schedule, the amount of available total goodput Bgood(t) at
time t is still distributed according to the weights6 wi of the N classes. Thus, if a class i is
in the set of active classes A(t), its share of goodput at time t is:

bgood,i(t) =
wi

∑ j∈A(t) w j
·Bgood(t); i ∈ A(t) (4.5)

Since a passive class does not consume any resources, one can use Equation 4.5 to substi-
tute bgood,i(t) in Equation 4.4:

Bgood(t) · ∑
i∈A(t)

wi

gi(t) ·∑ j∈A(t) w j
= Braw (4.6)

The total goodput rate can therefore be computed if Braw and the individual GTRs gi(t) of
the mobile stations are known:

Bgood(t) =
Braw

∑i∈A(t)
wi

gi(t)·∑ j∈A(t) w j

(4.7)

With Equation 4.5, the goodput scheduled for a single, active mobile station i is:

bgood,i(t) =
wi

∑ j∈A(t) w j
·

Braw

∑k∈A(t)
wk

gk(t)·∑ j∈A(t) w j

; i ∈ A(t)

= wi ·
Braw

∑k∈A(t)
wk

gk(t)

(4.8)

Since the resource consumption of a mobile station i is equal to bgood,i(t) ·
1

gi(t)
and the

amount paid by each customer is a constant Ci, the cost per consumed unit of resource at
time t can be calculated as Ci·gi(t)

bgood,i(t)
. Figures 4.1(a) and 4.1(c) compare the results of the

simulation of the example problem to these analytical results.

6As mentioned in Section 3.1.3, each class has an integer weight wi and is guaranteed a share of wi
∑ j w j

of the total rate.

36 4. Hierarchical Link-Sharing in Wireless LANs

Agency Traffic m1 d m2

Type [Mbit/s] [ms] [Mbit/s]

VoIP 0.030 20 0.020
A WWW 0.000 20 0.050

FTP 0.000 20 0.025

VoIP 0.030 20 0.020
B WWW 0.000 20 0.050

FTP 0.000 20 0.050

Table 4.1: Service curve parameters for leaf classes in the example scenario shown in
Figure 4.2.

Summary

The previous example and this analysis demonstrate two effects which are unwanted for
the ISP: 1) The behavior of Company A drastically influences the bandwidth available to
Company B. 2) Although Company A only pays for 15% of the link capacity, it is able
to utilize a much larger share of the available resources leading to unfairness in terms of
costs per unit resource consumption.

In order to avoid such a scenario, the scheduler needs to be able to take into account the
amount of resources (in terms of raw bandwidth) which are needed to provide a specific
service to a user. This would enable an ISP to make Service Level Agreements (SLAs)
not only based on goodput but also specifying the conditions under which this goodput
can be expected, e.g. an user will be guaranteed a rate of 64 kbit/s as long as his signal to
noise ratio (SNR) is above a specified value. After this point, the scheduled goodput rate
for him will be reduced in order to limit his consumption of the network resources.

4.4 Wireless Link-Sharing Model
This section introduces a wireless link-sharing model which allows the specification of
scheduling constraints based on combinations of user-oriented and resource-based crite-
ria. It assumes that the scheduler is able to obtain information about the GTR for each
mobile station.

Wireless Link-Sharing Example

The example (Figure 4.2) used to illustrate the behavior of the wireless link-sharing model
and the modified H-FSC algorithm is an extended version of the scenario presented in the
introduction of this chapter. Here the wireless link is shared between two agencies, each
of them using Voice over IP, WWW and FTP services. It is also assumed that a leaf
class has been created for every mobile station using a specific service. Table 4.1 lists the
service curve parameters for the leaf classes. Two piece-wise linear service curves [58]
are used: m1 is the slope of the first segment, d is the x-coordinate where the two pieces
intersect and m2 is the slope of the second segment.

4.4.1 Competitive vs. Cooperative Scheduling
A simple solution to avoid the unfairness caused by different goodput to throughput ratios
of mobile stations would be to base the scheduling completely on the resource consump-
tion of a mobile, i.e. by defining the service curve in the raw throughput domain. How-
ever, this would lead to an unwanted behavior when scheduling traffic for different traffic

4.4. Wireless Link-Sharing Model 37

Link
Wireless

 A
Agency Agency

 B

1.6 Mbps

1.2 Mbps

<−<−<− <− <−<− <−<−<−<−<−

MS 1

MS 1

<−

VoIP ftp VoIP

MS 1 MS P. . .MS N. . . MS 1 . . . MS 1 . . . MS 1 . . .MS 1 . . .

0 N 10

co
op

er
at

iv
e

sc
he

du
lin

g
co

m
pe

tit
iv

e
sc

he
du

lin
g

synchronization
class

per−mobile destination
classnormal class

0 P 3 0 Q 2 0 R 30 0 S 10 0 T 2

200 kbps 150 kbps 50 kbps 600 kbps 500 kbps 100 kbps

MS Q MS R MS S MS T

400 kbps

www www ftp

Figure 4.2: Example for a wireless link-sharing hierarchy.

classes within the subtree of each agency. A simple example would be that of two differ-
ent mobile stations, each with a specified resource share of 20 kbit/s for VoIP. If MS 1 has
a goodput to throughput ratio of gms1 = 1 and MS 2 has gms2 = 1

10 , and the scheduler has
a share of 220 kbit/s of raw throughput available, in a purely resource-consumption based
model it will schedule a fraction of 110 kbit/s of the available resources for each mobile.
If the queues of both stations are constantly backlogged, this leads to excess service for
MS 1 and only 11 kbit/s MAC layer goodput for MS 2 causing it to drop its VoIP connec-
tion. The desired behavior would be to guarantee the minimum needed service for each
mobile station before scheduling any excess bandwidth.

Therefore, a wireless link-sharing model has to be able to take resource-consumption
based constraints and goodput based constraints into account. Thus, one can define two
types of scheduling which need to be supported by the algorithm:

• Competitive Wireless Scheduling: Resource-consumption based scheduling between
competing entities (e.g. two different customers). Service curves specify the amount
of resources in terms of raw bandwidth which the scheduler needs to provide for a
class if it has demand. (In the example, this corresponds to the scheduling between
Agencies A and B.)

• Cooperative Wireless Scheduling: Goodput based scheduling between two classes
(e.g. within one company). Service curves specify the amount of MAC layer good-
put needed by a class. No excess bandwidth is scheduled to any class as long as
another class in the subtree is unsatisfied. Excess bandwidth is scheduled indepen-
dently of the GTR of a class.

4.4.2 Synchronization Classes

In order to integrate both scheduling types in one model, a class which synchronizes both
approaches is needed. This type of class is called synchronization class in the remainder
of this document. A possible algorithmic representation will be presented in Chapter 5,

38 4. Hierarchical Link-Sharing in Wireless LANs

but usually cooperative scheduling is performed in the subtree below the synchronization
class, and the subtree is integrated in a competitive scheduling environment by the syn-
chronization class. The root class of the link-sharing tree is always a synchronization class
since the raw throughput of the wireless device is assumed to be constant. In the example
shown in Figure 4.2, the classes for Agency A and Agency B are both synchronization
classes. This guarantees that the first agency is able to use 75% and the second agency
25% of the available resources at any point in time if they have sufficient demand.

5. A Wireless H-FSC Algorithm

In this chapter, the previously defined wireless link-sharing model is applied to the Hier-
archical Fair Service Curve Algorithm (see Section 3.4.3).

Although the proposed approach of combining resource- and goodput-based scheduling
within one wireless scheduling hierarchy using synchronization classes could be applied
to many scheduling schemes (e.g. CBQ or H-PFQ), H-FSC was chosen as base algorithm
for the following reasons:

• It is designed using a formal approach (e.g. in contrast to CBQ).

• It offers better and stronger real-time guarantees and more accurate link-sharing
than any other hierarchical scheduler [58].

• The service curve approach decouples the allocation of delay and bandwidth re-
sources in a more elegant way than a static priority scheme.

• Various other projects (e.g. DARWIN [28], Router Plugins [11], ALT-Q [9]) have
successfully tested H-FSC schedulers in wired networks.

In the following, first the cooperative scheduling within a subtree is described, both in
situations where enough bandwidth is available and under overload conditions, then com-
petitive scheduling in the modified H-FSC is shown.1 Finally, a simple way to support
dropping of outdated packets for real-time classes is shown.

5.1 Cooperative Scheduling
As defined in Section 4.4.1, each class for which cooperative scheduling is performed is
part of a subtree which has a synchronization class as its root. Cooperative scheduling
within this subtree (e.g. the subtree of which the “Agency A” class is root in Figure 4.2)

1Note that it is not possible to completely avoid overload situations if a high utilization of the medium is
demanded because of the random nature of the wireless medium. Roughly speaking, you can always have
a user who moves into a position where the link-quality is worse than before, therefore requiring a larger
amount of raw throughput to provide the same service.

40 5. A Wireless H-FSC Algorithm

in situations where enough resources are available (Equation 3.18 is valid for the subtree)
is similar to the behavior of an unmodified H-FSC scheduler: Service is provided without
taking destination specific resource-consumption into account. The virtual time of a class
within the subtree, which determines the distribution of bandwidth using the link-sharing
criterion, corresponds to the amount of data handed down to the MAC layer. Implicitly,
stations experiencing a bad link are allowed to use a larger share of the raw bandwidth in
order to be able to compensate the low link quality, e.g. by doing FEC, retransmissions or
using a lower transmission rate.2 Therefore, compared to an unmodified H-FSC scheduler
implemented above the MAC layer, the only difference is that the goodput scheduled is
based on the amount of resources available for this subtree.

In an overload state, the amount of resources available for a subtree s is insufficient to
guarantee all service curves, since it is less than the sum of the eligible curves of all
active sessions in the subtree ∑i∈As(t) Ei(ai; t). Since the root of a cooperative scheduling
subtree is a synchronization class, the service curve is resource-based and the total amount
of resources available for the subtree within an arbitrary interval (t1, t2] is Ss(t2)−Ss(t1).
Under overload these resources are completely consumed and the following equation must
hold for all active leaf classes As(t):

Ss(t2)−Ss(t1) = ∑
i∈As(t1)

1
gi ·di

· (Ei(ai, t2)−Ei(ai, t1)); As(t1) = As(t2) (5.1)

Here di is a class specific factor by which the service for this class is reduced, and the
goodput to throughput ratio gi(t) is approximated to the constant gi within the interval
(t1, t2]. If, analogous to the approach in the goodput domain, the raw bandwidth share of
each class is to be degraded by a constant factor, then di has to be determined in a way
that 1

gi·di
= const. The solution is to determine the di for each class as the fraction of the

required GTR over GTR of the specific leaf class:

di =
(K

Ss(t2)−Ss(t1)
)

gi

where

K = ∑
i∈As(t1)

(Ei(ai, t2)−Ei(ai, t1))

(5.2)

whereby 1
gi·di

= Ss(t2)−Ss(t1)
K , and the condition given in Equation 5.1 is satisfied.

Roughly speaking, this approach reduces the (goodput) service of each class in a way that
the raw bandwidth available to each class is distributed proportional to the service curves
and guarantees that the subtree consumes only the amount of resources available to the
synchronization class which is its root.

2The scheduler is only able to guarantee delay constraints with an accuracy of the time needed to transmit
one maximum length packet via the MAC layer (including retransmissions, FEC, back-off, etc). Various
MAC layer mechanisms are proposed in order to provide differentiated services in the MAC layer, these are
out of the scope of this thesis but could be used in order to be able to give tighter delay guarantees.

5.2. Competitive Scheduling 41

5.2 Competitive Scheduling

The modified H-FSC scheduler performs competitive scheduling based on raw throughput
(resource-consumption) among synchronization classes. Note that, although they usually
are root of a cooperative scheduling subtree as shown in Figure 4.2, they could also be leaf
classes, e.g. if the desired behavior is to provide a fixed amount of resources to a leaf class.
Since the algorithm defined in the previous section guarantees that a synchronization class
is never allocated more than the amount of resource specified by its service curve by
using the real-time criterion, only the sharing of bandwidth using the link-sharing criterion
needs to be considered.

In contrast to cooperative scheduling, now the virtual time of a class is based on the
resource consumption by incrementing it by the product of 1

gi
and the packet size whenever

a packet is transmitted for a class. The following example illustrates the incrementation of
virtual times: If one assumes that subclass “MS 1” of Agency B in Figure 4.2 transmits a
packet of size sp using the link-sharing criterion on a link with gms1 = 1

10 , the virtual time
of the subclass itself and of the VoIP class will be incremented by sp, and the virtual time
of Agency B and of the wireless link root class will be incremented by 1

gms1
· sp = 10 · sp.

5.3 Delay

The original, wireline H-FSC algorithm guarantees that the deadline for a packet specified
by the service curve is not missed by more than τmax, which is the time needed to transmit
packet of the maximum size (Section 3.4.3). A similar guarantee can be derived for the
wireless variant if the usage of an optimal channel monitor is assumed which has perfect
knowledge of the GTR gi for a mobile station i: If the time to transmit a packet with
maximum length at the minimum GTR gmin is τmax,gmin , the deadline determined by the
reduced service curve 1

di
·Si(·) is never missed by more than τmax,gmin .

In case that a suboptimal channel monitor is used, the maximal amount of time by which a
deadline can be missed depends on the error of estimation of gi and the delay with which
a change of the channel quality is reflected by the monitor. (An example calculation is in
Section 7.3.1.)

5.4 Packet Dropping

For a real-time class, the reduction of its rate in an overload situation can lead to an
unwanted accumulation of packets in its queue increasing the delay of each packet. For
this traffic class, a mechanism is needed which is able to drop outdated packets allowing
the usage of the remaining capacity for packets which have not exceeded their maximal
delay. A simple way to integrate this behavior in the H-FSC scheduler is the concept of
a packet drop service curve. It is used to compute a hard deadline, after which a packet
is outdated and will be dropped from the queue, in the same way that the transmission
deadline is calculated using the regular service curve.

42 5. A Wireless H-FSC Algorithm

6. Implementation

This chapter describes the design and implementation details of a wireless scheduling ar-
chitecture for the Linux traffic control environment. Although it was mainly developed in
order to evaluate the wireless link-sharing model presented in Chapter 4 and the modified
H-FSC scheduling scheme developed in Chapter 5, its use is not restricted to this specific
algorithm. Unless denoted otherwise, the given informations are valid for the simulation
as well as for the prototype implementation. The remainder of the chapter is organized as
follows: First, Section 6.1 briefly gives the necessary background information about the
most relevant parts of the Linux kernel, introduces the various components of the Linux
traffic control framework and presents a simple example for using it in a wireline environ-
ment. Then our extensions for supporting wireless scheduling based on long-term channel
state information within this framework are shown in Section 6.2. Finally, implementa-
tion details of the modified H-FSC scheduler and the wireless channel monitor are given
in Sections 6.3 and 6.4.

6.1 The Linux Traffic Control Framework (TC)

Linux is an open source UNIX variant, which was started by Linus Torvalds in 1991 and
has been continuously developed by the open source community since then. Its source
code is freely available under the GNU License.1 This and the fact that Linux is known
for its highly flexible networking code, which allows the configuration of state-of-the-art
firewalls and routers (including support for virtually every known networking protocol, IP
Masquerading/Network Address Translation, DiffServ, RSVP, etc.), were the main rea-
sons that it was chosen as the basis for the implementation of the wireless scheduling
testbed.

The part of the Linux operating system which is responsible for all bandwidth-sharing
and packet scheduling issues is called Traffic Control (TC) and has been available since
kernel 2.1.90. Beginning with the late 2.3 kernels, it became part of the standard kernel.
This description is based on kernel 2.4.13, which was the most recent kernel version at
the time when this text was written.

1The GNU General Public License is published by the Free Software Foundation. License and Linux
sources can be downloaded at [25].

44 6. Implementation

Application

Presentation

Session

Transport

Network

Link

Physical

Link

Physical

TCP/UDP

FTP, WWW browser, etc.

Device driver, MAC

Network Interface Card

Network

Application

Transport

Traffic Control

OSI Network Stack LINUX Network Stack

IP/ICMP/IGMP, IPX, etc.

Figure 6.1: Linux networking and the OSI reference model.

Most parts of the kernel 2.4.13 Traffic Control (including Integrated Services and RSVP)
were written by Alexey Kuznetsov [27], later support for Differentiated Services was
added by Werner Almesberger [2]. Although Linux TC focuses on output traffic shaping,
it has basic support for ingress traffic policing.

As in most UNIX operating systems, the implementation of the Linux networking code
follows a simplified version of the OSI reference model [57] as shown in Figure 6.1.
While the original Linux networking code was derived from BSD Unix, it was completely
rewritten for the 2.2 kernel in order to be able to provide a better performance. Of the
shown layers, only the data link layer, the network layer, and the transport layer functions
are executed in kernel space, the application layer protocols and the application itself are
running in user space. The packet scheduling and traffic control code is implemented
below the network layer directly above the device driver. This way, different network
layer protocols as IP, IPX and AppleTalk can be supported, and the scheduler can reorder
the packets right before they are sent down to the network interface card. Although thus
Traffic Control is implemented at the lowest level of the operating system which is not yet
device specific (as the device driver), there are many situations – especially in a wireless
environment – where TC could benefit from scheduling support in the lower layers.

Figure 6.2 shows the path of a data packet through the Linux network stack. When a
packet arrives at a network interface and is passed to the network layer, it can optionally
be classified/tagged. In addition, a special ingress queuing discipline can be used to limit
the maximum rate at which packets of each class are received – this can be used e.g. to
protect the host against various types of Denial of Service (DoS) attacks. Then it is either
passed to the higher layers or to the IP forwarding part, where the next hop for the packet
is determined. When it reaches the egress part of traffic control, it is classified (possibly
taking tags of the ingress classifier into account), policed (e.g. it could be assigned a lower
priority if a certain rate is exceeded), and scheduled for transmission. The scheduling
decision can include dropping of the packet, delaying it, immediately sending it and so
on. A comprehensive discussion of the implemented components can be found in [1] and
[47], the DiffServ components are presented in [2].

6.1.1 Components of Linux Traffic Control

The high flexibility of the Linux traffic control architecture is achieved by providing a set
of quality of service and link-sharing modules, which can be combined in multiple ways to
support the scheduling requirements needed at a specific node. These kernel modules can

6.1. The Linux Traffic Control Framework (TC) 45

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������
�������
�������
�������

�����
�����
�����
�����

Traffic Control

Application(s)

TCP/UDP

Input−Demultiplexing
Token Bucket Filter
Ingress Classifier/

IP Forwarding
Egress Classifier/
Policing Output Queuing NET / SCHED

TRANS

APPL

LINK / PHY

Figure 6.2: Parts in the network stack where traffic control is involved.

be configured with a user space control program, which communicates with the kernel by
using a special kind of network socket (called netlink socket). Besides passing parameters
(e.g. bandwidth requirements) to the kernel, the user space control program also specifies
the structure of the specific QoS architecture at runtime of the node.

The basic components of the Linux QoS architecture are:

• queuing disciplines

• classes

• filters

All more complex scheduling setups are implemented by composing these three types of
components in a way that the desired behavior is achieved. In the following, after intro-
ducing the different kinds of components, an example scenario is presented (including
the necessary command options for the Traffic Control program tc), which illustrates the
ways in which the different components can be combined.

6.1.1.1 Queuing Disciplines

Queuing Disciplines (qdiscs) are kernel modules, which have an enqueue and a dequeue
function and perform reordering of the stored packets. In general, the enqueue function
is called whenever the network layer of the operating system wants to transmit a packet,
and the dequeue function is called when the device is able to transmit the next packet. A
simple example is a single priority FIFO queue, which would accept packets and dequeue
them in the same order. But qdiscs can also act as a container having filters and classes.
A filter is a module which is used in order to determine the class of a packet. A class is
a logical group of packets which share a certain property.2 What makes this concept very
flexible is that a class usually again uses another queuing discipline in order to take care
of storing the packets. In the example of a multi-priority queue, a packet arriving at the

2Therefore, the term class in Linux TC is more general than in the context of hierarchical link-sharing
(Chapter 3). Basically, the only precondition is that it is possible to implement a filter module, which
identifies the packets of a class.

46 6. Implementation

FIFO

FIFO

Filter

Filter

Filter

High priority class

Low priority class

Outer qdisc

Figure 6.3: Simple example of a qdisc which has inner classes, filters and qdiscs

qdisc would first be passed to a set of filters. These would return the class (in this case
identical to the priority) of the packet. Each class then could use a single priority FIFO
queue in order to actually store the packet.3

The available queuing disciplines can be divided in two groups: the simple qdiscs which
have no inner structure (known as queues in the Linux TC terminology) and those which
have classes (schedulers). The first group includes:

• pfifo_fast: A 3-band priority FIFO queue. Packets of the lowest band will always
be sent first, within each band usual FIFO scheduling is done. This queue is the
default queue and is attached to a newly created class.

• sfq: A stochastic fair queuing discipline as explained in Section 3.1.4.

• tbf: A Token Bucket Filter (TBF) queue, which passes packets only at a previously
specified rate but has the possibility to allow short bursts.4

• red: Implements the Random Early Detection (RED) [18] behavior, which starts
dropping packets before the queue is completely filled in order to get TCP connec-
tions to adapt their transmission rate.

• gred: A generalized RED implementation used for DiffServ (see Section 2.2) sup-
port.

• ingress: A queue used for policing ingress traffic.

The following queuing disciplines make use of classes:

• cbq: Implementation of the Class Based Queuing link-sharing scheme as described
in Section 3.4.1.

3This simple example is used to illustrate the interaction of modules. In reality, it would be more efficient
to use the standard 3-band priority queue (pfifo_fast) if 3 or less priority levels are to be managed.

4The model is that of a constant stream of tokens which ends in a bucket. Each packet needs a token to
be dequeued – if the bucket is empty, meaning that the flow sends at a higher rate than allowed, the packet is
delayed until a new token is generated. If the flow currently transmits at a rate lower than the rate at which
tokens are generated, the surplus tokens are stored up to a specified limit (“the depth of the bucket”) and
can be used at a later time.

6.1. The Linux Traffic Control Framework (TC) 47

• atm: A special qdisc which supports the re-direction of flows to ATM virtual chan-
nels (VCs). Each flow can be mapped in a separate VC, or multiple flows can share
one VC.

• csz: A Clark-Shenker-Zhang [52] scheduling discipline.

• dsmark: This queuing discipline is used for Differentiated Services (see Section
2.2, [2]) support. It extracts the DiffServ Codepoint (DSCP), which indicates the
desired per-hop-behavior (PHB), and stores it in the packet buffer. After the packet
has passed the inner classes, the DSCP is updated and the packet is sent.

• wrr: A Weighted Round Robin (WRR) scheduler5 as explained in Section 3.1.3.

Each qdisc is assigned an unique id X : Y composed of a major number X and a minor
number Y . The root queuing discipline of a device always has the minor number 0.

Interface

As mentioned before, the most important functions of a scheduler/qdisc are the enqueuing
and dequeuing operations. Both work on the so-called skbs, which are the Linux network
buffers. Basically, one can think of an skb as a structure which contains a packet with
all of its headers and control information for handling it inside the network stack. Most
operations also have a pointer to the scheduling discipline itself as an input, so that the
function can access the private data of this instance of the queuing discipline.6 All meth-
ods which are sending/receiving configuration data to/from user space also have a pointer
to the Netlink buffer as parameter.

The interface of a queuing discipline is held in a structure Qdisc_ops (for qdisc opera-
tions), whose members are listed in Table 6.1.

6.1.1.2 Classes

A qdisc that supports classes usually has one root class, which can have one or more
subclasses. A class can be identified in two ways: Either by the user assigned class id,
which is composed of a major number corresponding to the qdisc instance it belongs
to and an unique minor number, or by its internal id. A class with one internal id can
have one or more user assigned class ids. When a class is created, it has a pfifo_fast
queuing discipline for storing its packets. This can be replaced by doing a so-called
graft operation, which attaches a different queuing disciple to the class. A class also
supports a bind operation, which is used to bind an instance of a filter to a class. Although
classes and schedulers are two separate components, the methods for handling them are
usually implemented in one kernel module. In contrast to that, a filter is in most cases an
independent module.

Interface

The methods offered by the interface of a class can be divided in two functional areas:
modifying the properties of the class itself and attaching/detaching filters and inner queu-
ing disciplines. The most important of the first section is the change operation, which
is used in order to modify the properties of a class. If the class to be changed does not
exist, it is created. Important functions of the second group are the bind_tcf function,
which binds a traffic control filter to a class, and the graft operation. Table 6.2 gives an
overview of all supported operations.

5This queuing discipline is not part of the standard kernel but can be downloaded at [38].
6This is a simple way to approximate an object oriented design using standard C.

48 6. Implementation

Name Description

next A pointer to the next qdisc in the list.
cl_ops A pointer to the class operations implemented

by this queuing discipline. (see 6.1.1.2)
id The unique name of this kind of queuing discipline.
priv_size The size of the private data area.

enqueue(*skb, *qdisc) The enqueue function.
dequeue(*qdisc) The dequeue function, returns the dequeued skb.
requeue(*skb, *qdisc) Re-enqueues a skb at the front of a queue

when the network interface was unable to send
the packet.

drop(*qdisc) Drops a packet from the queue.
init(*qdisc, *arg) Initializes the queuing discipline.
reset(*qdisc) Resets the state.
destroy(*qdisc) Frees all memory held by the qdisc.
change(*qdisc, *arg) Changes the parameters.
dump(*qdisc, *skb) Returns statistics.

Table 6.1: Interface of a scheduler/qdisc in the Linux traffic control framework.

Name Description

graft(*sch, intid, *sch_new, Used to change the inner qdisc of
*sch_old) a class.

leaf(*sch, arg) Returns the leaf qdisc of a class.
get(*sch, classid) Returns the internal id of a class and

increments the classes usage counter.
put(*sch, intid) Decrements the usage counter of a class.

If no one uses the class anymore, it is
destroyed.

change(*sch, classid, parentid, Changes the properties of a class.
**netlink, intid) (priority, bandwidth, etc.)

delete(*sch, intid) Deletes the specified class.
walk(*sch, *walker) Traverses all classes of a scheduler

and invokes the specified function on
each class.

tcf_chain(*sch, arg) Returns the list of filters bound to
this class.

bind_tcf(*sch, classid) Binds a filter to a class.
unbind_tcf(*sch, intid) Removes a filter from a class.
dump(*sch, ...) Returns statistics for a class.

Table 6.2: Interface of a class.

6.1. The Linux Traffic Control Framework (TC) 49

6.1.1.3 Filter

Queuing disciplines and classes use filters in order to classify incoming packets. They
have a priority-ordered list of filters for each protocol, which the packet is passed to until
one of the filters indicates a match. Filters for the same protocol must have different
priorities.

The following filter types are supported:

1. Generic filters can classify packets for all classes of a queuing discipline.

• cls_fw: The packet is classified upon a tag assigned by the firewall/netfilter
code [50].

• cls_route: The packet is classified using routing table information [22].

2. Specific filters only classify packets for one specific class.

• cls_rsvp: A filter for RSVP support (Section 2.1).

• cls_u32: This filter classifies packets according to an arbitrary byte pattern in
the packet header or payload.

When a new packet is to be enqueued in a class or qdisc, the filters bound to the class
for the specific protocol of that packet are called in order of decreasing priority. (Lower
priority values indicate higher priority.) The first filter which indicates a match classifies
the packet.

Interface

The central function offered by the filter interface is the classify function, which deter-
mines the class of a network buffer (packet). All the other operations are used to manage
the assignment of filters to classes and their properties. These functions are listed in Ta-
ble 6.3. Filters are stored in filter lists. Each record in this list holds the information for
a specific instance of a filter, for example the priority, the class id, and a pointer to the
structure with filter operations.

6.1.2 Managing and Configuring Linux TC

As stated in the introduction of this section, traffic control is part of all newer Linux
kernels, so there is no need to apply any special patches if one is using a kernel of version
2.3.X or newer. The only precondition for using scheduling mechanisms is to ensure that
the corresponding configuration constants for the desired traffic control components were
set when the kernel was compiled. (A complete listing of all options can be found in
Appendix A.2, Table A.1.)

Since traffic control is part of the kernel but has to be managed by programs running in
user space, a standardized way was developed in which user programs can communicate
with the operating system kernel: The information is encapsulated in special message for-
mat (Netlink-message) and sent on a special socket interface called Netlink-socket. The
kernel receives and analyzes the message and answers with a confirmation message on the
socket. Since each functional part of the kernel needs different parameters, a specific pro-
tocol is used for each area. In order to manipulate routing and traffic control information
the RTNetlink protocol is used.

50 6. Implementation

Name Description

*next Pointer to the next filter in the list.
*id Unique id of the filter.

classify(*skb, ..., *result) Classifies a network buffer.
init(*tcf) Initializes a filter.
destroy(*tcf) Destructor of a filter.
get(*tcf, handle) Returns the internal id of a filter and

increments its usage counter.
put(*tcf, intid) Decrements a filters usage counter.
change(*tcf, ...) Changes the properties of a filter.
delete(*tcf, ...) Deletes a specific element of a filter.
walk(*tcf, *walker) Traverses all elements of a filter and invokes

the specified function on each element.
dump(*tcf, ...) Returns statistics for a filter.

Table 6.3: Interface of a filter.

Although basically any user space program can generate Netlink messages (if it has the
necessary permissions), the configuration program usually used for configuring the QoS
components is the traffic control program tc, which is part of the iproute2 package [27].
Because of space limitations, the detailed usage of tc will not be explained as part of this
thesis (an interested reader will find more information in [22]), but the following example
should make the basic principles clear and illustrate the combination of the basic modules
to form a scheduling configuration for a specific purpose.

6.1.2.1 A Simple Example for Wireline Traffic Control

A small company has a 10 Mbit/s link, which connects its workstations and one FTP
server to an Internet service provider. The FTP server is used to allow customers and
employees to download and upload files via the Internet. The network is illustrated in
Figure 6.4. Since bandwidth is a scarce resource, the company wants to limit the share
of the FTP traffic to 20 percent and at times where less bandwidth is needed by FTP
the rest should be available for the workstations. On the other hand, FTP traffic must
never exceed its 20 percent share, even if the rest of the bandwidth is currently unused,
because the ISP of the company charges extra for any bandwidth consumed above a rate
of 2 Mbit/s. In order to solve this problem, a Linux router is installed at the edge of the
corporate network.

The first Ethernet interface of the Linux router (eth0) is connected to the ISP, the second
interface (eth1) is the link towards the internal network. Since it is only possible to
limit outgoing traffic, the setup consists of two parts: the CBQ configuration limiting the
outgoing traffic on eth0 (the “downstream” traffic from the internal network’s point of
view) and a second part limiting outgoing traffic on eth1 (the “upstream”).

The following tc commands would be used to configure the router for correct sharing of
the link in the “upstream” direction:

1. At first the root queuing discipline currently attached to the network interface is
deleted (not necessary if there is none attached yet):

6.1. The Linux Traffic Control Framework (TC) 51

Workstations
192.168.2.X

TO/FROM ISP

FTP Server
192.168.3.1

Linux router

ETH0

Hub

ETH1

Hub

Figure 6.4: Example network for wireline bandwidth sharing.

src 192.168.2.0

U32 Filter

src 192.168.3.1

U32 Filter

classid 1:100 rate 8Mbit

classid 1:200 rate 2Mbit

SFQ

SFQ

classid 1:1 rate 10Mbit

CBQ, handle 1:0

Figure 6.5: The configuration of network interface eth0 in the example network.

tc qdisc del dev eth0 root

2. Then a root qdisc is added which uses the class-based queuing scheduler:

tc qdisc add dev eth0 root handle 1:0 cbq bandwidth 10MBit \
avpkt 1000

3. The next step is to create a root class, which contains two subclasses – one for the
FTP traffic and one for the traffic coming from the workstations:

tc class add dev eth0 parent 1:0 classid 1:1 cbq \
bandwidth 10 MBit rate 10MBit allot 1514 weigth 1Mbit \
prio 8 maxburst 20 avpkt 1000

tc class add dev eth0 parent 1:1 classid 1:100 cbq \
bandwidth 10MBit rate 8MBit allot 1514 weight 800kbit prio 5 \
maxburst 20 avpkt 1000 isolated

tc class add dev eth0 parent 1:1 classid 1:200 cbq \
bandwidth 10MBit rate 2MBit allot 1514 weight 200kbit prio 5 \
maxburst 20 avpkt 1000 bounded

The keyword isolated indicates that the workstation class does not borrow any
bandwidth to other classes, the bounded option means that the class may never

52 6. Implementation

exceed its limit. If both keywords were omitted, surplus bandwidth would be shared
in proportion to the weights of the classes, which could also be a desired behavior
in our scenario.

4. Now the two CBQ subclasses are assigned a stochastic fair queuing discipline:

tc qdisc add dev eth0 parent 1:100 sfq quantum 1514b perturb 15

tc qdisc add dev eth0 parent 1:200 sfq quantum 1514b perturb 15

5. And the final step is to bind two U32 filters to the root qdisc, which decide based on
the source address of the IP packet which class a packet belongs to. (For simplicity,
we assume that the FTP server is purely used for FTP services.)

tc filter add dev eth0 parent 1:0 protocol ip prio 100 u32 \
match ip src 192.168.2.0/24 flowid 1:100

tc filter add dev eth0 parent 1:0 protocol ip prio 100 u32 \
match ip src 192.168.3.1 flowid 1:200

In Figure 6.5 the created queuing configuration is shown schematically. The commands
for setting up the “downlink” traffic scheduling are almost the same except that the filter-
ing would be based on the destination IP address.

6.1.3 Traffic Control Next Generation (TCNG)

The Traffic Control Next Generation (TCNG) [1] project focuses on providing a more
user-friendly configuration language and supporting hardware accelerators in traffic con-
trol. The two major components being developed are the Traffic Control Compiler (TCC)
and the Traffic Control Simulator (TCSIM). Since this is work in progress, only the basics
will be presented in order to show the impact which this project has on our work.

The concept of the Traffic Control Compiler is to accept a wide variety of input languages
(from user-friendly configuration languages to machine-friendly languages like XML)
and to convert them to a unified internal data structure. This information is then sent to
a variety of output processors, e.g. tc using a Netlink socket to configure the kernel or a
hardware accelerator configuration program. An output processor could also generate a
new kernel module and provide the configuration data for it.

TCSIM is an event-driven simulation environment for Linux traffic control components.
It operates on the original kernel code and allows to test the almost unmodified source
code of a traffic control component while still running in user space. Event traces can be
generated and analyzed. By using the tc interface to configure the simulated modules,
the communication via Netlink protocol can also be tested. Although TCSIM is part of
TCNG, it is able to simulate components running in the current TC architecture as well.
Since the simulations are performed using almost exactly the same code that is used in
the Linux kernel, the results are closer to the actual system behavior than those of an
abstracted simulation model. The drawback of the TCSIM simulation environment is that
it has only a very basic support for traffic generation (only constant bit-rate) and statistical
analysis.

6.2. Extending Traffic Control for Wireless Scheduling 53

6.1.4 TC API (IBM Research)

An alternative approach to configuring Linux traffic control is currently being developed
by IBM Research. Instead of using the tc command line tool, they propose a new traffic
control Application Programming Interface (API) called TC API [44].7 It provides a li-
brary which enables an user space application to configure the traffic control architecture
of a host using a set of API functions. These generate the necessary netlink messages and
send them to the kernel using a netlink socket. When the results are received, they are
forwarded to the application as the return values of the called API function. By simpli-
fying the development of QoS management applications for Linux in this way (since the
API avoids the need to generate and parse tc arguments), IBM hopes to encourage further
research and development activity w.r.t. supporting QoS functionality on Linux.

6.1.5 Problems When Applying Standard Linux Traffic Control to
Wireless Networks

While the Linux traffic control architecture is capable of supporting virtually all impor-
tant wireline scheduling scenarios (e.g. IntServ, DiffServ, MPLS, etc.), and many wireline
schedulers have been implemented, it has several disadvantages when used in a wireless
environment. Taking the assumptions made by most wireless scheduling schemes pre-
sented in Chapter 3 into account, the main problems are:

1. Linux TC is an example for a scheduling architecture implemented above the MAC
layer. Therefore, as described in Chapter 4, bandwidth regulation mechanisms are
based on the assumption that the transmission medium has a constant bandwidth
and are not able to take destination-specific resource-consumption into account.

2. Most wireless scheduling algorithms assume perfect knowledge of the channel-
state. The concept of a channel monitor is completely missing in Linux TC, and
therefore a queuing discipline has no access to information about state of the wire-
less channel to a specific mobile station.

3. Queuing disciplines specifically developed to support scheduling in a wireless en-
vironment are not available.

In order to be able to evaluate the modified H-FSC algorithm described in Chapter 5
within the Linux traffic control framework, it was extended to support long-term channel-
state dependent and resource-consumption based scheduling. These modifications will be
outlined in the following section.

6.2 Extending Traffic Control for Wireless Scheduling

This section presents the extensions made to the existing Linux traffic control framework
in order to be able to support the implementation of wireless scheduling. The main objec-
tives for the design are:

• Support for the implementation of a wide range of wireless scheduling algorithms.

7Version Beta 1.0 of the API is available since Oct. 2001 at [44].

54 6. Implementation

• Integration in the current framework:

– Re-use existing parts/interfaces whenever possible.

– Usage of similar structures for new (internal) interfaces.

– Configuration of wireless scheduling components with the same mechanisms
as used in wireline setups (tc, netlink socket).

• Separation of channel monitoring and scheduling functionality.

• Minimize the necessary hardware dependent changes, i.e. the modification of device
drivers.

Therefore, a new component, the wireless channel monitor, was introduced, which is a
loadable kernel module similar to the qdisc and filter/policier modules. But unlike the
latter ones, maximal one wireless channel monitor is active per wireless device at any
point in time.8 The channel monitor estimates the channel quality and capacity towards
each mobile destination and keeps track of the last probing attempt (usually the last time
data was sent to a destination). The way in which the monitor acquires its knowledge
is implementation-specific. But, although it is possible to monitor channel qualities in
a device independent way (e.g. by monitoring the time intervals between two dequeuing
events), in general much more accurate estimations can be made by using information
available in the device driver. Therefore, a channel monitor can offer an interface on
which a modified device driver can pass information it has about the channel-state.

The channel monitor provides its information via a new interface towards the (wireless)
qdisc. Therefore, whenever the queuing discipline needs information about the channel-
state for scheduling a packet transmission, it requests it from the channel monitor. Be-
cause in this way the scheduling is decoupled from channel monitoring, the monitoring
component can be replaced (e.g. if a wireless MAC supporting channel quality monitoring
via RTS/CTS is available) without any modifications to the scheduler itself.

Figure 6.6 illustrates the extended architecture.

Three different types of wireless channel monitors were implemented:

• dummy: A dummy module, which returns constant channel quality values for a
mobile destination.

• ratio: A channel monitor, which estimates the quality of a wireless channel by
measuring the time between two dequeue events. This is not very accurate because
of the interrupt driven nature of the dequeue event and the fact that most wireless
devices use an internal buffer for storing multiple packets. The advantage of this
method is that it does not require any modifications of the device driver.

• driver: This channel monitor implements the additional interface towards a wire-
less device driver in order to obtain the status information (for details see Section
6.4).

8The reason for this is that in many cases an accurate estimation of the channel conditions is not possible,
if two or more monitors are concurrently running on one device, because each of them only sees a partial
amount of the transmission attempts.

6.2. Extending Traffic Control for Wireless Scheduling 55

IP / IPX / ...

classify

result

result

get channel state

Module
Queuing Discipline

Wireless Channel
Monitor Module

Filter Module

Device Driver

Wireless Network Interface

Call of Channel Monitor Interface

Traffic Control

Figure 6.6: Schematic overview of extended traffic control architecture.

6.2.1 Channel Monitor Interfaces

Since the wireless channel monitor component needs to interact with its environment,
three new interfaces were introduced: a kernel/channel monitor module interface, a chan-
nel monitor/scheduler interface and an interface between a channel monitor and a (modi-
fied) device driver. In addition, the kernel/scheduler interface was extended to support the
assignment of a channel monitor to a scheduler.

Like the interface of other components, the interface of a wireless scheduler is encapsu-
lated within a characteristic structure of the type wsched_channel_monitor,9 which is
shown in Table 6.4.

Scheduler Interface

This is the main interface of a wireless channel monitor. Most important are the get_-
channel_state and get_capacity functions, with which a scheduler can get informa-
tion about the quality of the wireless channel/estimated goodput rate currently available
to a specific mobile station. Since the channel monitor needs to keep track of transmis-
sion events, a wireless scheduler is also required to inform the channel monitor about the
start/end of a transmission by using start_transmit and end_transmit. (The end of
a transmission from the wireless schedulers point of view occurs when the next packet is
dequeued.)

Kernel Interface

The main purpose of the kernel interface is to allow the registration of a monitor module
once it is available and the scheduler initiated assignment of a monitor to a wireless de-

9defined in ../net/pkt_wsched.h

56 6. Implementation

Name Description

*id An unique identification string of this monitor.
*next Pointer to the next monitor (if in list).

init(*mon) Initializes a monitor.
destroy(*mon) Destructor.
skb2dst(*mon, *skb, *dst) Return destination id of an skb.
get_channel_state Returns the channel-state for the specified
(*mon, *dst) mobile station (dst).
reset_channel_state Resets all channel-state information for the
(*mon, *dst) specified mobile station.
start_transmit Signals the start of a transmission to
(*mon, *dst, size) the channel monitor.
end_transmit(*mon, *dst) Signals the end of a transmission.
abort_transmit(*mon, *dst) Transmission was aborted.
channels_idle(*mon) Signals that scheduler has nothing to send.
get_capacity(*mon, *dst) Get information about current channel capacity

towards a destination (goodput in byte/s).

Table 6.4: Channel monitor/scheduler interface.

Name Description

data_link_transmit_status Called by a device driver to inform the monitor
(*mon, *dst, status) about a successful/unsuccessful transmission.
data_link_receive_status Called by a device driver to signal received
(*mon, *dst, status) link status information.

Table 6.5: Channel monitor/device driver interface.

vice.10 When a wireless channel monitor module is loaded (e.g. by issuing the insmod
command), it registers itself using the register_wsched_channel_monitor function.
After that point in time, a wireless scheduler can request the assignment of this channel
monitor to a device by using the wsched_wchmon_add call. When the scheduler does not
need the monitor anymore (e.g. because it itself is removed/deactivated or because the user
requested a different channel monitor), it signals this fact using wsched_wchmon_del. If
a channel monitor is not in use, it can be removed (with an rmmod command). This causes
the module to call the unregister_wsched_channel_monitor function, which removes
it from the kernel’s list of available monitors. Table 6.6 gives an overview of the exported
functions.

Device Driver Interface

The device driver interface for channel-state signaling consists of only two functions:
wsched_data_link_transmit_status and wsched_data_link_receive_status (Ta-
ble 6.5). The first signals the result of a transmission attempt (many cards report the
success/failure of a transmission in an interrupt when they are able to process the next

10The functionality of this interface is implemented in the file ../net/sched/wchmon_api.c of the
kernel source tree.

6.2. Extending Traffic Control for Wireless Scheduling 57

Name Description

register_wsched_channel_monitor Announce the availablity of a monitor.
(*mon)
unregister_wsched_channel_monitor Remove a channel monitor from the
(*mon) list of available monitors.

wsched_get_wchmon_by_id(*id) Search monitor specified by the id.
wsched_wchmon_add(*dev, *id) Add a monitor to a device.
wsched_wchmon_del(*dev) Remove a monitor from a device

wsched_data_link_transmit_status Wrapper for corresponding monitor
(*dev, *dst, status) function.
wsched_data_link_receive_status Wrapper for corresponding monitor
(*dev, *dst, status) function.

Table 6.6: Additionally exported kernel functions.

packet). Unfortunately – since the WLAN card can have an internal buffer – this result
may not correspond to the last packet handed down but to a previous packet. By tak-
ing the device buffer into account and averaging, a channel monitor can still obtain some
useful status information. The second function is used to signal link-status information
received from the MAC controller, which many wireless cards report after the reception
of a packet. This is usually the most reliable information currently available.

6.2.2 Wireless Queuing Disciplines

Since the integration of a wireless queuing discipline in the existing framework without
requiring modifications of the higher layers is crucial, the standard interface of a scheduler
in Linux traffic control, as presented in Section 6.1.1.1, also has to be implemented by a
wireless queuing discipline. Thus, it is possible to re-use existing components, e.g. to set
up configurations which make use of the available modules for packet classification and
policing, but use a wireless scheduler for actually scheduling the packets.

The only differences between the conventional wireline queuing disciplines and their new
variants for wireless scheduling is that a wireless queuing discipline takes the channel-
condition into account when scheduling the next packet for transmission using the infor-
mation provided by a channel monitor via the additional interface. A simple scheduler
developed in order to test the framework and illustrate its usage is the wireless FIFO
scheduler described in the following.

6.2.2.1 Example: Resource-Consumption Aware FIFO

One of the main problems in providing wireless quality of service is that because of the
changing conditions in WLANs a realistic call admission mechanism will not be able to
guarantee that the system will not go into an overload state. In this case, the downlink
scheduler is forced to drop packets to one or more destinations when its queues are filled.
Rather than simply dropping all further packets once the queues in the access point are
filled, a channel-state aware FIFO discipline could drop packets in a way which optimizes
the total system goodput while still being very easy to implement. It also does not have
the high scheduling overhead of a fair queuing discipline. In the following, the idea of

58 6. Implementation

Listing 6.1: Wireless FIFO: enqueue a packet (pseudo code).�

if (queue−>length == queue_limit)
purge_one_packet_from_queue();

else if (queue−>length ≥ drop_th)
5 {

x = random();
if (x ∗ queue_limit < queue−>length ∗ drop_P)
{

purge_one_packet_from_queue();
10 }

}

queue−>enqueue(skb);
� �

such a queuing discipline will be briefly presented, afterwards it is shown how such a
discipline was implemented within the framework.11

In a wireless base station, which uses conventional FIFO scheduling, a station experienc-
ing a bad channel will consume a higher share of the raw wireless bandwidth than a station
with a good channel, which is receiving data at the same rate, because of MAC layer re-
transmissions and adaptive modulation. As illustrated in Chapter 4, this is the main reason
why wireline scheduling approaches at the network layer fail when applied to the wireless
case since they do not have any control over the additional bandwidth consumed due to a
bad channel-state.

In a system which uses a FIFO scheduler, a flow i having an arrival rate of ra,i can consume
an amount of resources (in terms of raw bandwidth) braw of up to

braw,i = ra,i ·
1
gi

(6.1)

where gi corresponds to the GTR (as defined in Section 4.2) of the flow.

Under the assumption that all flows have the same priority and are sending at no more than
their specified rate (or have been policed before, e.g. by a token bucket filter), the number
of flows, whose specified rate is violated in an overload situation, can be minimized by
dropping packets of flows which are on the channel with the minimum GTR. This also
maximizes the total goodput of the system.

In order to dampen the influence of the selective dropping on the system and to avoid
periodically entering and leaving the overload state, the scheduler allows the specification
of a drop threshold dropth and a maximum drop probability dropP. The algorithm starts
dropping packets when the queue length exceeds the drop threshold parameter. After
that, the probability for dropping a packet increases linear with increasing queue length
as shown in Listing 6.1.

The number of packets taken into account when trying to make room for the newly arrived
packet is called the lookahead_window parameter of the scheduler. It is necessary to limit

11in ../net/sched/sch_csfifo.c

6.2. Extending Traffic Control for Wireless Scheduling 59

Listing 6.2: Wireless FIFO: dequeue a packet (pseudo code).�

monitor−>end_transmit(monitor , /0) ;
if (packets_to_send ())
{

5 monitor−>skb2dst(monitor , skb , destination) ;
monitor−> start_transmit (monitor , destination , length) ;
skb = queue−>dequeue();

}
else

10 {
monitor−>channels_idle(monitor) ;
skb = /0 ;

}
return(skb) ;

� �

the computational overhead in cases where a long queue is to be used. In order to avoid
the problem that a destination with a bad GTR is not able to update its status – even if its
channel quality improves – because it is not allowed to send any packets, the scheduler
has a probe_interval parameter, which specifies the maximal duration a destination is not
probed. All packets whose destination has not been probed for a longer time will be
skipped when selecting a packet to drop.

The schedulers dequeue function (Listing 6.2) first signals the end of the previous trans-
mission to the channel monitor. If the qdisc is backlogged, the channel monitor is notified
of the next transmission and a packet is dequeued. Otherwise, the idle state is signaled to
the monitor.

Note that before the start_transmit call to the channel monitor, which passes desti-
nation information, the function skb2dst is used to obtain the destination of the skb to
be sent. This is necessary since the scheduler does not know in which way the channel
monitor determines the destination of a packet. Usually this will be the MAC address, but
it could also be the IP address or other fields in the packet header/payload. E.g. in case
of the scheduler running in the TCSIM simulation environment, the destination has to be
determined by the IP address since TCSIM does not support MAC header generation. A
different approach would have been to handle the identifier of a destination only within
the monitor and passing the complete skb when calling start_transmit – with the dis-
advantage that a scheduler would not be able to make any destination based decisions.

The purge function (Listing 6.3) demonstrates how a wireless queuing discipline can
obtain information about the channel-state. In this case, starting with the most recently
enqueued packet, the channel monitor information for all packets within the lookahead
window is used in order to search the last recently enqueued packet on the channel with
the worst GTR which is not due to be probed. This packet – if the search was successful
– is dropped. (For simplicity, the function gets channel-state information for every packet
instead of caching results for a destination.)

If the number of packets in the lookahead window is equal to the total queue length, the
probe interval is Tprobe, the maximum packet size is Lp and the GTR of a destination i is

60 6. Implementation

Listing 6.3: Wireless FIFO: purge (pseudo code).�

skb = skb_peek_tail (queue) ; /∗ look at last enqueued packet ∗/
min_level = ∞ ;
drop_skb = /0 ;

5 range = min(lookahead_window, queue−>length);

for (i =0; i < range ; i++)
{

/∗ query channel monitor for channel status information : ∗/
10 skb2dst (monitor , skb , destination) ;

state = monitor−>get_channel_state (monitor , destination) ;

/∗ packet is only dropped if the channel was recently probed ∗/
/∗ Note : ‘ jiffies ‘ is a system variable which indicates the ∗/

15 /∗ current time . ∗/
if (jiffies − state −>last_probed < probe_interval ∧

state −>level < min_level)
{

drop_skb = skb;
20 min_level = state −>level;

}
skb = skb−>prev; /∗ advance to previously enqueued packet ∗/

}

25 if (skb 6= /0)
drop_skb(skb) ; /∗ unlink packet from queue and drop it ∗/

� �

6.3. Implementation of Modified H-FSC Algorithm 61

gi one can compute the maximum amount of raw bandwidth rraw,max used by the mobile
station with the lowest GTR in an overload situation as:

rraw,max =
1

Tprobe ·gi
·Lp (6.2)

By choosing Tprobe one is able to guarantee a minimum rate for giving a mobile station
access to the channel. And since gi and Tprobe are independent of the rate of a flow, rraw,max

can be as low as desired if one assumes that an upper limit for gi can be determined (e.g.
based on the maximum number of allowed retransmissions and the minimal modulation
rate). Thus, the influence of flow experiencing very bad channel conditions compared to
the other channels on the system can be limited.

Therefore, the channel-state aware FIFO algorithm is a very simple scheduler, which
demonstrates the usage of long-term channel-state information in order to limit the re-
source consumption of a mobile host. On the other hand, it has severe disadvantages:

• As in the case of a conventional FIFO queuing discipline, flows have to be rate-
limited beforehand.

• The minimum bandwidth is the same for all destinations and cannot be adapted to
the requirements of a specific flow. (QoS requirements of individual flows are not
considered.)

• The isolation of flows is violated, and the short-time bandwidth share of a flow in a
system in overload state becomes more bursty.

• Bandwidth and delay are not decoupled.

Therefore, in cases where a QoS criteria and resource-consumption oriented scheduling
is demanded, the usage of a wireless fair queuing or link-sharing discipline is necessary,
e.g. the modified H-FSC scheduler.

6.3 Implementation of Modified H-FSC Algorithm
This section describes the details about the implementation of a H-FSC algorithm which
was extended to support the wireless scheduling model developed in Chapters 4 and 5.
It is based on the H-FSC implementation by Carnegie Mellon University [58] distributed
as part of Sony’s ALTQ package for BSD UNIX [9]. Therefore, the task consisted of the
following steps:

1. Porting the H-FSC scheduler to Linux

(a) in the TCSIM environment

(b) in a “real” Linux kernel

2. Integration of the new wireless scheduling model

(a) in the TCSIM environment

(b) in a “real” Linux kernel

62 6. Implementation

The scheduler itself consists of two parts: a (user space) configuration module for the
traffic control program tc12 and a kernel module, which implements the scheduling algo-
rithm13.

6.3.1 User Space Configuration Module
The user space part of the scheduler reads the configuration commands, stores the gathered
data in the appropriate structures and passes it via the netlink socket to the kernel part. It
also inquires status/statistic information and formats it for output.

Whereas the original H-FSC algorithm assumes that the curve used for link-sharing and
the one used for real-time scheduling are always identical, the implementation is more
flexible and allows the specification of separate curves for both purposes. By indepen-
dently assigning the amount of service to be received under the real-time/link-sharing
criterion, one can e.g. limit the maximal rate of a class by not specifying a link-sharing
service curve (scheduler becomes non work-conserving!), or only provide resources if
excess bandwidth is available by not assigning a real-time curve.

Service curves are two-piece linear and specified using the triplet [m1 d m2], where m1 is
the slope of the first segment, d is the projection of the intersection of both pieces on the
x-axis (corresponding to the length of the initial burst in ms) and m2 is the slope of the
second segment. Thus, if one chooses d ≤ Lmax

m1
and Lmax is the maximal packet length, the

value of d determines the maximal delay for packets of a class in the wireline case. In the
wireless case, the delay additionally depends on the amount of guaranteed resources for
the subtree the mobile is in and on the GTR of the mobile itself. The value of m2 specifies
the long-term rate of the class. As outlined in Chapter 5, in the wireless scheduling model
service curves in a cooperative scheduling subtree are in terms of goodput, and service
curves of competitive classes describe the amount of resources (raw bandwidth).

Global Scheduler Parameters

When the H-FSC qdisc is attached to a device, the following parameters can be specified:

• bandwidth THROUGHPUT: The total bandwidth of the interface (for a wireless
device this should be the expected average goodput).

• varrate: Use variable bandwidth adaption (in overload situations the scheduler
adapts the service curves to the available bandwidth). [+]

• estint SIZE: Size of interval (in bytes of transmitted data) for bandwidth estima-
tion/averaging when using “varrate”. [+]

• wireless: Use the new hierarchical wireless scheduling model. [+]

• wchmon NAME: Install wireless channel monitor NAME on the target device. [+]

• reducebad PERCENT: When service curves have to be reduced because not enough
bandwidth is available, the GTR of a class determines PERCENT of its reduction
and all classes are reduced by (100-PERCENT) times the necessary reduction. For
the wireless scheduling model PERCENT is 100, which is also the default value. [+]

Options marked with “[+]” were introduced with the modifications made for wireless schedul-
ing.

12in file ../tc/q_hfsc.[c,h] of the iproute2 directory tree
13../net/sched/sch_hfsc.c

6.3. Implementation of Modified H-FSC Algorithm 63

Link

User A User B

WWW FTP VoIP WWWFTP

[0 0 2Mbit]

[0 0 0.5Mbit][1.5Mbit 20ms 0.3Mbit][0 20ms 0.7Mbit]

sync

sync sync

[1Mbit 20ms 0.3Mbit] [0 20ms 1.2MBit]

[0 0 4Mbit]

[0 0 1Mbit]

Figure 6.7: Wireless link-sharing for two users with the modified H-FSC scheduler. In the
[m1 d m2] triplets of a H-FSC scheduler configuration, the slopes m1 and m2 are specified
by the amount of bits, which have to be transmitted in a second.

Parameters for Individual Classes

When a class is created or modified, the following parameters can be specified:

• sc [m1 d m2]: Defines a service curve (short for using rt and ls with the same values
for one class).

• rt [m1 d m2]: Defines a real-time curve.

• ls [m1 d m2]: Defines a link-sharing curve.

• dc [m1 d m2]: Defines a drop curve. [+]

• grate BPS: Defines a linear real-time service curve with a rate of BPS (equivalent
to rt [0 0 BPS]).

• default: Specify this class as the (new) default class.

• sync: This class is a wireless synchronization class. [+]

An Example Setup

Listings 6.4, 6.5 and 6.6 show how the modified H-FSC scheduler would be configured
for the wireless link-sharing structure shown in Figure 6.7.

64 6. Implementation

Listing 6.4: Example Setup Part 1 of 3: Installing the channel monitor and qdisc setup.�

#!/ bin /bash
#
simple example for configuring the modified H−FSC scheduler
#

5

load a wireless channel monitor
insmod wchmon_driver

configure root
10 tc qdisc add dev eth1 root handle 1:0 hfsc bandwidth 4Mbit \

estint 32000b wireless wchmon driver
� �

Listing 6.5: Example Setup Part 2 of 3: Adding classes for both users.�

add classes on first level

− user A:
15 tc class add dev eth1 parent 1:0 classid 1:10 hfsc [sc 0 0 1 Mbit] sync default

− user B:
tc class add dev eth1 parent 1:0 classid 1:20 hfsc [sc 0 0 2 Mbit] sync

� �

The first step is to load a wireless channel monitor – in this case the type “driver” is used
– and to add the qdisc (Listing 6.4).

Then the classes for both users are configured (Listing 6.5), competitive scheduling among
both users is enforced by making both classes synchronization classes.

The last step is to add subclasses for each traffic type (Listing 6.6). Within the subtree of
each user the scheduling is cooperative.

A more complicated example script for the modified H-FSC scheduler, which specifies the
complete hierarchical link-sharing structure shown in Figure 4.2, is part of the Appendix,
Section A.4.4.

6.3.2 H-FSC Kernel Module

The kernel module sch_hfsc implements the core functionality of the (modified) H-FSC
scheduler. In the following, the most important aspects of the implementation will be
described, for more details the reader is referred to the source code.

The scheduler uses two different kinds of data structures in order to store the data: a
scheduler-specific and a class-specific structure. The first is used in order to keep track of
global scheduler information (Table 6.7, additional data necessary to implement the GTR
based wireless scheduling model is marked with “ [+]”) and exists only once per scheduler
instance. The most important parts are the eligible list, which determines if the real-time
criterion has to be used to select the next packet, and the list of filters attached to the sched-
uler. It also holds the information necessary to estimate the current rate at which packets
are dequeued. Although not necessary to implement the wireless scheduling model as

6.3. Implementation of Modified H-FSC Algorithm 65

Listing 6.6: Example Setup Part 3 of 3: Adding classes for different traffic types.�

add classes on second level − user A
20 # − WWW

tc class add dev eth1 parent 1:10 classid 1:101 hfsc [sc 1Mbit 20ms 0.3Mbit]
− FTP
tc class add dev eth1 parent 1:10 classid 1:102 hfsc [sc 0 20ms 0.7Mbit] default

25 # add classes on second level − user B
− VoIP
tc class add dev eth1 parent 1:20 classid 1:201 hfsc [sc 1.5 Mbit 20ms 0.3Mbit]
− FTP
tc class add dev eth1 parent 1:20 classid 1:202 hfsc [sc 0 20ms 1.2Mbit]

30 # − WWW
tc class add dev eth1 parent 1:20 classid 1:203 hfsc [sc 0 0 0.5 Mbit]

now add the appropriate filters
tc filter add . . .

� �

described in Chapters 4 and 5, this was included in order to be able to support variable
rate interfaces without wireless channel monitors. In this case, since no destination spe-
cific information is available, the service curves of all classes are reduced equally in an
overload situation.

The second data structure used (Table 6.8) represents a class within the link-sharing hier-
archy. Basically, the information necessary to characterize the state of a class consists of:
the three different service curve types (real-time, link-sharing, and drop curve) with their
current deadlines, the amount of service received for each curve, and information how the
class is integrated within the hierarchy. Each class also has a pointer to a synchronization
class. If the class is part of a subtree in which cooperative wireless scheduling is done, it
points to the nearest synchronization class on the way to the root of the tree. In case the
class is part of a competitive scheduling environment, it is a pointer to the class itself.

Internal Service Curve Representations

Internally the scheduler uses three different forms of service curves: The two-piece linear
service curves specified by a user are transformed to an internal representation based
on bytes per CPU clock count. (The CPU maintains a very accurate timer value with
a resolution of about 106 tics per second.) In order to speed up the calculation, also
the inverse values of the slope of both segments are pre-calculated. Whenever a class
becomes active, the current runtime service curve for this class is calculated by shifting
this representation to the current time/received service coordinates. For a simple form of
admission control (checking that the sum over the service curves of all children does not
exceed the parent’s service) a generalized service curve, which can consist of multiple
pieces in form of a linked list, is used.

Synchronization Classes

The main tool in order to implement the resource-consumption aware scheduling model
are the newly introduced synchronization classes. Classes which are part of a cooperative

66 6. Implementation

Name Description

*sched_rootclass pointer to the root class of the scheduler
*sched_defaultclass pointer to the default class
sched_requeued_skbs a queue of processed but later requeued skbs
sched_classes total number of classes in the tree
sched_packets total number of packets stored in the tree
sched_classid id number of scheduler
sched_eligible eligible list
sched_filter_list list of attached filters
wd_timer watchdog timer

(started to trigger the next dequeue event, if the
scheduler has packets but is currently not allowed
to send – e.g. because the flow is rate-limited)

sched_est_active true if the scheduler currently estimates
the dequeuing rate [+]

sched_est_time time of last estimation [+]

sched_est_length length of last dequeued packet [+]

sched_est_dfactor current estimation of global degrade factor d [+]

sched_est_interval_log length of estimation interval [byte] [+]

sched_est_el_sum sum of all active eligible curves [+]

sched_flags scheduler flags
sched_est_required_cap total capacity needed for real-time requests [+]

cur_dst destination of packet currently scheduled [+]

sched_est_reducebad percentage at which GTR of a flow is taken
into account in overload situations [+]

Table 6.7: Global data for a modified H-FSC scheduler instance.

6.3. Implementation of Modified H-FSC Algorithm 67

Name Description

cl_id unique class id
cl_handle unique class handle
*cl_sch pointer to scheduler instance
cl_flag flags (e.g. sync, default, . . .)

*cl_parent parent class
*cl_siblings list of sibling classes
*cl_children list of child classes

*cl_clinfo class info (e.g. generalized service curve)
for admission control

*cl_q qdisc for storing packets of this class
*cl_peeked next skb to be dequeued
cl_limit maximal length of class queue
cl_qlen number of currently stored packets
cl_total total work received [bytes]
cl_cumul work received under real-time criterion [byte]
cl_drop_cumul total packet drop service received [byte]
cl_d current deadline
cl_e eligible time
cl_vt virtual time
cl_k packet drop time [+]

cl_delta_t_drop difference between real time and drop service time [+]

*cl_rsc real-time service curve
*cl_fsc link-sharing service curve
*cl_dsc packet drop service curve [+]

cl_deadline deadline curve
cl_eligible eligible curve
cl_virtual virtual time curve
cl_dropcurve packet drop curve

*cl_sync_class parent synchronization class [+]

cl_sync_el_sum sum of all eligible curves (sync class) [+]

cl_sync_required_cap avg. required capacity [byte/s] (sync class) [+]

cl_vtperiod virtual time period sequence number
cl_parentperiod parent’s vt period sequence number
cl_nactive number of active children
*cl_actc list of active children
cl_actlist active children list entry
cl_ellist eligible list entry
cl_stats statistics collected for this class
cl_refcnt; counts references to this class
cl_filters; counts number of attached filters

Table 6.8: Data of a class of the modified H-FSC scheduler.

68 6. Implementation

packet is enqueued

filters in
filter list? to classify

the packet

match
indicated?

invoke filtersyes

no

no

packet assigned
to default class
 of scheduler

yes

packet assigned
to class of first
matching filter

add packet to
queue of the
class

successful ?
update statistics
return error
code

no

yes

yes

number of packets
in scheduler

update statistics,
queue length and

class has
exactly 1
packet?

class becomes
active, update
its service curves

no

return
code for successful
enqueuing

Figure 6.8: Flow chart of packet enqueuing in the modified H-FSC implementation.

scheduling subtree will add their eligible curves upon activation to the sum of eligible
curves cl_sync_el_sum of their parent synchronization class, and the amount of de-
manded resources for the subtree will be calculated and stored in cl_sync_required_cap.

The variable cl_sync_required_cap describes the average goodput in bytes per second
which is required within a subtree in order to keep the service curves of all active ses-
sions of the subtree. In an overload situation, the scheduler adapts the service rates of
the individual classes as described in Section 5.1: The service for each class is reduced
based on its resource-consumption so that the whole subtree does not consume more than
the (resource-based) service curve of the synchronization class specifies, which is its root.
This is done by inquiring the current goodput for a class from the wireless channel mon-
itor. This amount in relation to the required average goodput then determines the service
curve reduction di of a class i (as in Equation 5.1).

Instead of actually adapting the service curves of a class each time its GTR changes, the
implementation increases the amount of service required to transmit a packet correspond-
ingly. E.g. instead of reducing a service curve by 50% it will simply require two units of
service for each byte to be sent since this requires much less computational effort.

As described in Section 5.2, a synchronization class is also required to adapt the virtual
times used for the link-sharing criterion: Since within a cooperative subtree the scheduling
is based on goodput, service curves need to be converted to the corresponding resource-
based amounts whenever the “border” to a resource-based part of the link-sharing tree is
crossed. Therefore, the function responsible for updating virtual times is always called
with the goodput-based and the resource-based update values as parameters. It then up-
dates the virtual times of each node corresponding to its scheduling mode.

Enqueue/Dequeue Functions

The most important functions of the scheduler are the enqueue(...) function, which is
called whenever the network protocol stack hands a packet down to the scheduler, and the
dequeue(...) function, which is executed if the device is ready to send the next packet.

6.4. Long-Term Channel-State Monitor 69

The enqueue function is rather simple: Its main purpose is to determine the class a packet
belongs to and to update the status of class and scheduler as shown in Figure 6.8.

The central function of the modified H-FSC scheduler is the dequeue Function. Its most
important tasks are:

• Selecting the class of which the next packet is sent.14

• Estimating the available bandwidth and reacting to overload situations.

• Updating the service curves.

Figure 6.9 shows the reaction to a dequeue event within the dequeue function and its
subfunctions as a process flow chart.

6.4 Long-Term Channel-State Monitor
Since the prototype for the architecture had to be implemented on currently available
hardware, where no explicit support for monitoring wireless channel quality towards a
specific mobile host is available in the data link layer, other options had to be considered:
For the implementation of a wireless channel monitor there are several possible sources of
information, which can be used to determine the goodput to throughput ratio gi for a given
destination i: monitoring the time between dequeue events, the transmission interrupt of
the wireless card, signal quality/signal strength/noise information reported by the MAC
[13], and the currently used adaptive modulation of the MAC.

Signal Level, Noise Level and Signal Quality

In most currently available wireless chipsets (e.g. the Prism 2 by Intersil), an Automatic
Gain Control (AGC) unit monitors the signal condition and adapts the RF circuit of the
card. This information is also used to compute three values indicating the signal level,
the noise level, and the signal quality.15 (Some other designs, e.g. the one of the Raylink
2 MBit/s cards, only provide one value which indicates the signal level.) These values
are stored in the Parameter Storage Area (PSA) of the wireless card and can be read by a
device driver.

Measurements [13] [15] [20] have demonstrated a strong correlation between the signal
level reported by the card and the error-rate. Since the modulation technique used is
adapted based on the amount of errors on the wireless link, we assumed that the avail-
able goodput-rate for a mobile destination is also correlated. Experiments with a Raylink
2 Mbit/s FHSS wireless LAN card [23] and a Lucent 11 MBit/s DSSS card [60], both
conforming to the IEEE 802.11 standard, confirmed this assumption (Figure 6.10). (Mea-
surements were done with the testbed tools described in the Appendix, Section A.3.1.
UDP packet size was 1024 bytes. Rates were calculated over a window of 100 packets.
Estimated goodput was calculated as the average goodput of all windows for a signal
level.)

14Before selecting a new class for transmission, the implementation has to check if any processed but
later requeued packets are available. This happens if the device indicated that it is ready to accept the next
packet (causing a packet to be dequeued and the service counters to be updated), but later signaled that it is
unable to store the packet in its internal buffer, e.g. because of the packet’s size. In this case, the packet is
temporarily stored in a special scheduler queue, the requeued packets queue, and sent to the device at the
next dequeue event.

15The signal quality is the ratio of signal level to noise level.

70 6. Implementation

eligible time
minimum
search class with

dequeue packet
of selected
class

end of
transmission
to ch. monitor

packets
in scheduler?

no

yes

stop estimation
of dequeue
rate, return
NULL

 eligible
packets?

select class
using the link−
sharing criterion
(min. virtual time)

backlogged
class with ls curve

exists?

no calculate and start
watchdog timer and
return NULL

do packets
have to be
dropped?

yes

drop curve of class
according to
drop packets

no

yes

successful?
no class becomes

passive

yes

no

yes

determine GTR
of class using
the channel
monitor

update virtual
times and drop
curve

scheduling

criterion?
under real−time

update amount
of service received
under real−time
criterion

scheduler in
overload state?

update estimated
rate of dequeuing
(if activated)

yes

yes

no

class still
backlogged?

class becomes
passive

no

yes

indicate start of
transmission to

wireless
channel monitor

return

no

start rate monitoring
if necessary,
increase service
reduction

update deadlines
for drop curve,
eligible curve and
real−time curve

packet
dequeued

dequeue function called

indicate

already
processed but

requeued packets
available?

no

yes

dequeue packet
from schedulers
requeued packets
queue

return

dequeued

packet

Figure 6.9: Flow chart of packet dequeuing in the modified H-FSC implementation.

6.4. Long-Term Channel-State Monitor 71

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

100 110 120 130 140 150 160

G
oo

dp
ut

 [
bi

t/s
]

Signal Level

(receiving 1024 byte UDP packets)
Raylink 2 Mbit/s WLAN Card

(a) Raylink 2 Mbit/s FHSS

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

5e+06

0 5 10 15 20 25 30 35 40 45 50

G
oo

dp
ut

 [
bi

t/s
]

Signal Quality

(receiving 1024 byte UDP packets)
Lucent/Avaya 11 Mbit/s WLAN Card

(b) Lucent 11 Mbit/s DSSS

Figure 6.10: Correlation between signal level/quality and goodput-rate. Since the
Raylink card does not report a signal quality value, the signal level was used instead.
Signal level and signal quality values are vendor specific and not comparable.

72 6. Implementation

Therefore, a long-term channel monitor was developed which obtains the signal quali-
ty/signal strength values (depending on the possibilities the card provides) and estimates
the available goodput (in bytes/s) to a mobile destination.

Device Driver Modifications

For the Linux operating system a standard interface called Linux wireless extensions
[61] is available, which allows user space programs to set wireless specific parame-
ters of a device and obtain the three mentioned status bytes using a set of Input Out-
put Control (IOCTL) calls. Unfortunately, since the wireless channel monitor is a ker-
nel module, it is not able to use these functions directly. But since every wireless net-
work card driver completely implementing the wireless extensions provides the signal
level information and is similar in those parts, the necessary driver modifications are
simple and similar for most of the drivers: After locating the parts where the signal
level information for the wireless extensions are read from the card’s PSA, a call to the
wsched_data_link_receive_status(...) function exported by the kernel (Section
6.2.1) is inserted, which relays this information to the attached wireless channel monitor.

Update of Channel-State Information

Because the MAC of the used wireless cards updates the signal strength information only
upon reception of a data packet16, the current system forces the mobile stations to send
packets in regular intervals by sending an ICMP echo request packet to each mobile station
every second. This is done by starting a “ping” for each client on the access point, an
improved approach would be to monitor the received traffic and only send echo requests
if necessary. In a real-life situation the status information is likely to be updated more
often since most applications generate some kind of upstream traffic (e.g. the requests in
case of WWW browsing, acknowledgments in case TCP is used, etc.).

Calibration of a Wireless Channel Monitor

The channel monitor module described in this section maps the link level for a specific
mobile station to an expected goodput rate. One problem with this approach is that this
mapping is vendor and technology specific as shown in Figure 6.10. Furthermore, it could
also depend on the environment the access point is located in, the amount/characteristics
of interference and the technique of adaptive modulation used. Therefore our prototype
implementation uses the following calibration process: A monitoring tool developed for
this purpose (detailed description in Section A.3.1) measures the achieved goodput for a
mobile station in places with different signal levels. During this calibration process only
one mobile station and the access point must be active. The access point (or a connected
station in the wireline network) generates UDP traffic at a high rate guaranteeing the
link is always saturated. Goodput-rates for the different signal levels are recorded at the
mobile host. The result of this process is a table, which maps signal levels to expected
goodput-rates for the used technology and environment.

The wireless channel monitor can be used on different wireless hardware (as long as the
device driver provides the necessary status information), which could change even during
the runtime of the AP. E.g. a user could decide to unplug the Raylink wireless card and

16Meaning that the reception of an IEEE 802.11 management/control frame or a data frame containing
only a CF-ACK and no payload does usually not cause an update of this information.

6.4. Long-Term Channel-State Monitor 73

install a Lucent card, or the system might have two types of wireless cards. Therefore, a
flexible way was developed, which allows the configuration/update of the level to goodput
mapping during runtime and without need to recompile the channel monitor module: In
the Linux operating system the /proc file system can be used to allow the communication
of user space programs with the kernel by the means of regular file IO operations. The
channel monitor creates a wchmon_gtr_map entry in /proc/net/, where it exports the
currently used table and is able to read a new signal to goodput mapping. Thus, updating
the wireless channel monitor with data available from the calibration utility is done by
simply copying the generated file to /proc/net/wchmon_gtr_map.

Therefore, the calibration process usually consists of the following steps:

• Deactivate all mobile stations except one.

• Start calibration tool on mobile station and packet generation utility on access point.

• Record data in a large variety of positions.

• Copy table with the recorded signal to goodput mapping to wchmon_gtr_map in the
/proc/net/ directory of the access point.

74 6. Implementation

7. Simulation

This chapter describes the used simulation environment and presents the results of the
conducted simulations.

7.1 Simulation Model
For simulation purposes, a simple model was developed in order to evaluate the behavior
of the wireless H-FSC scheduler (Figure 7.1) in various situations. The basic assumptions
are the following: The scheduler is implemented at the access point of the wireless LAN.
Only downlink traffic (from the AP to the various mobile stations) is simulated. The
scheduler receives packets from the IP layer, rearranges their order1 and hands them down
to the device driver.

The properties of the wireless channel towards each mobile station depend on the position
and speed of the MS. Therefore, a two-state Markov model for the wireless channel, with
separate parameters for each station, is specified. Note that these are not physically dif-
ferent channels but descriptions for the behavior of the downlink channel to each mobile
station.

Autonomous retransmissions and rate adaptation of the wireless network adapter are sim-
ulated by increasing the time needed to transmit a packet. For simplicity, the additional
overhead/delay for acknowledgements and rate signaling is assumed to be small and not
taken into account. Therefore, the time needed to transmit a packet including one re-
transmission is exactly twice the time to send it on an ideal channel. In scenarios where
the effects of adaptive modulation are studied retransmissions are disabled, in all other
cases the maximum number of retransmissions is specified as part of the description of
the scenario.

The wireless channel monitor used for the simulations estimates the quality of the wireless
channel towards a mobile station based on the time needed to transmit a packet. For
example, if the raw throughput for a wireless device is Braw and the monitor observed
that a packet of length Lp was sent by the wireless NIC in δt to mobile station i, it would
estimate the GTR as

1Of course, the order of packets for a specific micro-flow is preserved.

76 7. Simulation

Channel MS (N)

Channel M
S (1)

C
hannel M

S (2)

C
hannel M

S (N
−1)

. . . .

Mobile Station 2

Mobile Station 1

Mobile Station (N−1)

(Device Driver, NIC)

(wireless H−FSC)

Access Point

Higher Layers
(e.g. UDP over IP)

Lower Layers

Packet Scheduler

Mobile Station (N)

Figure 7.1: Illustration of simulation model.

gi =
Lp

δt ·Braw
(7.1)

Thus, the simulated channel monitor performs an accurate estimation of the wireless chan-
nel quality with a delay of the time needed to transmit one packet. (This is caused by the
fact that it can only update its estimation after the packet is transmitted.)

For simplicity, the wireless NIC is assumed to have an internal buffer for storing ex-
actly one packet (independent of its size). Although this is not the case for most of the
equipment in use today, a larger buffer would only influence the accuracy of the wireless
channel monitor, which is not the focus of these simulations.

In this way, a level of detail was chosen for the simulations which allows us to study the
effects of relevant parameters, such as the number of retransmissions or adaptive modu-
lation, on the behavior of the scheduler. On the other hand, we abstract from details as
e.g. the wireless MAC protocol used, RTS/CTS mechanism or physical layer parameters,
which would influence the quantitative results observed but not the general behavior of
the scheduler.

7.2 Simulation Environment
All simulations were done using the TCSIM environment (see Section 6.1.3), which al-
lows the event-driven simulation of packet scheduling. Since TCSIM was developed for
wireline scheduling, several modifications and extensions were necessary in order to eval-
uate the wireless components by using simulations. Basically, three parts were added/ex-
tended:

• simulation of wireless network interfaces

7.2. Simulation Environment 77

(scheduler,
monitor, filter)

(packet arrival,
departure,
header/payload)

(link−sharing
configuration)

TCSIM Config
Script

TCSIM

(traffic types/
parameters)

TrafGen Script
Traffic Control

Log FileTraffic Generation

(TrafGen)

Figure 7.2: Structure of simulation environment.

• traffic generation

• trace analysis

Figure 7.2 shows the structure of the simulation environment: A traffic configuration file
describes the different types of data flows (e.g. constant bit-rate or Poisson distributed ar-
rival, rates, start and stop times, etc.) for a simulated scenario. Based on this information,
a trace of packet arrivals is generated. The link-sharing hierarchy is specified for the TC-
SIM simulation environment within a separate configuration file, which contains the same
traffic control commands used for a real Linux based access point. The TCSIM program
acts as a wrapper providing the environment necessary to run the scheduler, monitor, and
filter kernel modules. Simulation of wireless channel states is performed within a special
wireless simulation scheduler module, which is described in more detail in the following
section. The result of each simulation run is a log file recording the arrival/departure time
and content for each processed packet.

7.2.1 Wireless Channel Simulator

Since the chosen simulation environment TCSIM did not have support for simulation of
wireless network interfaces and wireless channels, an additional component had to be
developed in order to add this functionality. One approach would have been to add a
wireless network interface in the same way that is currently used for the wireline interface
simulation: Whereas a wireline network interface is simulated by polling the queue(s) at
a constant rate, the time between two transmissions on a wireless interface would vary –
following a wireless channel model of some kind.

However, a different, more flexible approach was chosen. The assumption is that a wire-
less network interface also transmits at a constant raw bit-rate – only the achieved goodput
is time-varying. Therefore, one is able to approximate the behavior of a wireless network
interface by using a special wireless channel simulator queuing discipline, which is polled
in regular intervals. The goodput of this queuing discipline follows the rules of an inner
channel model, for simplicity the two-state Gilbert-Elliot Model was chosen, but any other
model which can be simulated in a discrete event simulation is suitable.

The Gilbert-Elliot channel model (Figure 7.3) is a two-state Markov model, which simu-
lates the wireless characteristics by assuming that the channel can be in only two states: a
good state, in which the probability for a packet error2 is zero, and a bad state, in which a

2It was decided to use a packet based model rather than a bit-error based one since the position of a
bit-error was not relevant in our simulations. In addition, the overhead of a simulation is much less using a
packet based model.

78 7. Simulation

−< −<eP0 1

p

p

p

p
bb

bg

gb

gg

e
Good Bad

P= 0

Figure 7.3: Gilbert-Elliot model of a wireless channel.

G

B

G

B

G

B

Channel 1

Channel 2

Channel 3

00:00:8F:08:63:2F

00:00:8F:08:63:2Edst MAC

dst MAC

dst MAC 00:00:8F:08:63:30

time

Figure 7.4: State of the wireless link from an access point towards three mobile stations.

packet is corrupted with a probability eP,(0 ≤ eP < 1). The probability of changing from
a good state to a bad state is given by the transition probability pgb, the change from bad
to good occurs with pbg. Therefore, the model is completely characterized by specifying
eP, pgb and pbg.

The wireless simulation queuing discipline was designed to simulate the behavior of a
wireless LAN interface transmitting to mobile stations in different positions (and thus
experiencing different channel characteristics):

• It allows the specification of eP, pbg and pgb for the channel to each destination and
for one default channel.

• The channel states are simulated independently of transmissions and separately for
each channel as shown in Figure 7.4.

• The standard filters/classifiers are used in order to assign packets to simulated wire-
less channels. If no filter indicates a match, the default channel is chosen.

• An internal hardware queue of the wireless interface can be simulated, the queue
length is configurable as a qdisc parameter.

• Automatic retransmissions (as of the 802.11 MAC) are simulated, the maximum
number can be freely chosen.

• Different modulations are simulated by generating “useless” data before the packet
so that the sending of a packet is delayed a time corresponding to the modulation
rate.

7.2. Simulation Environment 79

−< −<eP0 1

−< −<eP0 1

−< −<eP0 1

p

p

p

p
bb

bg

gb

gg

e

Good Bad

P= 0

p

p

p

p
bb

bg

gb

gg

e

Good Bad

P= 0

p

p

p

p
bb

bg

gb

gg

e

Good Bad

P= 0

Filter

Filter

Filter

High priority class

Low priority class

FIFO

FIFO

CHSIM qdisc

eth0

Root scheduler (running on the wireless device)

Figure 7.5: Regular scheduler encapsulated in the wireless channel simulation scheduler,
which is running on a regular (TCSIM) network interface.

• A simulated channel corresponds to a scheduling class of the wireless simulation
qdisc. The probability values are configured using the tc program when a class is
created. All parameters for the wireless simulation are set using the standard Linux
traffic control interface.

Although the wireless simulation queuing discipline has the same interface of an usual
scheduler, its behavior is quite different:

• It duplicates and delays packets (in case of retransmissions and adaptive modula-
tion).

• It modifies packets. When the simulated channel indicates that the packet would
have been corrupted, the IP destination address is optionally deleted. This allows a
detailed analysis of the resources consumed by corrupted packets.

• Only one level of classes can be assigned (since a class always corresponds to a
simulated channel), and there is only one inner qdisc, which is the root scheduler
running on the simulated wireless network interface. However, obviously this inner
qdisc can have further classes and/or qdiscs.

• It classifies packets when they are dequeued, not when they are enqueued as a nor-
mal qdisc would do. The reason for this behavior is that the simulation only needs
to know the wireless channel of a packet at the point in time when its transmission
is simulated.

An example is shown in Figure 7.5. A packet will be processed according to the following
steps in this design when its transmission on a wireless medium is simulated: When it is
received from the network layer, it is handed to the first scheduler of the interface, which
is the wireless simulation queuing discipline sch_chsim. Here it is immediately handed
to the inner scheduler, whose behavior on the wireless link is to be examined.

Whenever the network interface indicates it is able to send the next packet, the simulation
qdisc dequeues packets from the inner scheduler until the internal queue of the simulated
wireless device is completely filled. Then the head of line packet of the internal queue is
classified by all registered filters in order to find out which channel this packet belongs to.
(Usually one would use a classification based on the MAC or IP address of the packet.) If
no match occurs, the default channel is assumed.

80 7. Simulation

Listing 7.1: TrafGen configuration file.�

/∗
∗ Trafgen example
∗
∗ Note : The macros PACKET(#) and PAYLOAD(#) are

5 ∗ defined in the main simulation file .
∗/

/∗ two Poisson distributed flows ∗/
stream begin 0 end 60 type POISSON rate 50 "send PACKET(1) PAYLOAD(1)"

10 stream begin 10 end 60 type POISSON rate 50 "send PACKET(255) PAYLOAD(255)"

/∗ a constant bit−rate flow ∗/
stream begin 10 end 60 type CBR rate 50 "send PACKET (2) PAYLOAD(2)"

15 /∗ a bursty flow ∗/
stream begin 0 end 60 type BURST rate 50 burst_rate 200
p_nb 0.1 p_bn 0.3 "send PACKET(3) PAYLOAD(3)"

/∗ a uniform distributed flow ∗/
20 stream begin 0 end 60 type UNIFORM rate 50 "send PACKET(1) PAYLOAD(1)"

� �

The state of the channel is checked. If it is in state “good”, the packet is transmitted
immediately. Otherwise, the packet is corrupted with probability eP and sent. If the
maximum number of retransmissions has been reached, the packet will be deleted from
the internal queue of the simulated device, else it is kept there and a retransmission is done
when the interface is ready again.

A detailed example script for simulating the usage of the wireless FIFO discipline de-
scribed in Subsection 6.2.2.1 in a wireless environment can be found in the Appendix,
Section A.1. A side-effect of the way in which the wireless simulation was implemented
is that it can also be executed within the network protocol stack of a running kernel (Ap-
pendix, Section A.4.1).

7.2.2 Traffic Generator (TrafGen)

A disadvantage of the TCSIM simulation environment is that only the simulation of con-
stant bit-rate flows (using the every keyword, for an example see bottom half of Listing
A.1 in the Appendix) and the sending of single packets at a specified point in time is
supported. In order to support the simulation of Poisson distributed and bursty flows, a
simple tool, the TCSIM Traffic Generator (TrafGen), was developed, which creates trace
files to be used in a simulation.

A configuration example is shown in Listing 7.1. Listing 7.2 is an excerpt of the gener-
ated trace. Using TrafGen, constant bit-rate, Poisson, uniform, and bursty flows can be
simulated.

7.2.3 Additional Trace Analysis Tools

Currently the support for trace analysis in TCSIM is limited. The main tools are the filter
script filter.pl, which is able to filter traces for source/destination addresses, ports,

7.3. Simulation Results 81

Listing 7.2: TrafGen trace file.�

time 0.000000s send PACKET(255) PAYLOAD(255)
time 0.000000s send PACKET(1) PAYLOAD(1)
time 0.000883s send PACKET(255) PAYLOAD(255)
time 0.004163s send PACKET(1) PAYLOAD(1)

5 time 0.007968s send PACKET(255) PAYLOAD(255)
time 0.014377s send PACKET(255) PAYLOAD(255)
time 0.020000s send PACKET(3) PAYLOAD(3)
time 0.020000s send PACKET (2) PAYLOAD(2)
. . .

� �

and enqueue/dequeue events, and the plot script plot.pl. The supported plot types are:
average rate, inter-arrival time, delay, and cumulative amount of dequeued data. Support
for delay histograms, delay probabilities, and inter arrival-time probabilities was added.
Furthermore, an averaging script called avg_calc.pl was implemented to calculate the
maximum, minimum, average, and standard deviation values over windows of trace data.

7.2.4 Steps of a Simulation Run

A typical TCSIM simulation run within the simulation environment consists of the fol-
lowing steps:

1. Create a TrafGen configuration (optional).

2. Generate a traffic trace using TrafGen (optional).

3. Create a TCSIM configuration.

4. Run the simulation (with generated traffic trace/CBR flows).

5. Filter the trace data using filter.pl.

6. Analysis of the trace log files using plot.pl and avg_calc.pl.

7.3 Simulation Results

The scheduler was tested in three different simulation scenarios: The first one uses a very
simple configuration consisting of only two mobile stations and one access point and is
similar to the situation in which the prototype was tested. The others study two different
constellations using a larger scheduling hierarchy with a larger number of mobile stations.
Since only minor changes were made influencing the behavior in a state in which excess
bandwidth is available, the simulated scenarios mainly concentrate on the properties of
the scheduler in overload situations.

7.3.1 Scenario 1

The first simulated scenario demonstrates the benefits of a resource-consumption aware
approach in a very simple link-sharing situation similar to the one presented as motivation
in Section 4.1. A wireless link with a maximum (goodput) rate of 6 MBit/s is shared by

82 7. Simulation

Link
Wireless

syncsync

 A B
Company Company

Station
Mobile Mobile

Station
21

6 Mbps

4915 kbps 1229 kbps

if g > 0.9 if g > 0.5
SLA: 4424 kbps SLA: 614 kbps

Figure 7.6: Link-sharing hierarchy for Scenario 1.

two companies, of which each has only a single mobile station. Company A has a Service
Level Agreement (SLA), which guarantees a rate of 4424 kbit/s for Mobile Station 1
(MS 1) as long as its GTR g1 is larger or equal to 0.9. Company B’s SLA specifies a
rate of 614 kbit/s for g2 ≥ 0.5. Therefore, 4915 kbit/s (80%) of the total raw bandwidth
are reserved for Company A and 1229 kbit/s (20%) for Company B. It is assumed that the
costs for the wireless infrastructure are also shared in a 80/20 ratio. The setup is illustrated
in Figure 7.6, the complete configuration script is part of the Appendix (Section A.4.3).
For comparison, a regular CBQ scheduler above the link layer was configured to share the
link in the same 80% to 20% ratio.

Both mobile stations receive UDP packets with a payload of 980 bytes. Traffic for MS 1
is generated at3 a constant rate of 4887 kbit/s and for MS 2 at 607 kbit/s. The GTR g1 of
MS 1 is constantly 1.

Figure4 7.7 compares the behavior of both schedulers when the modulation used by MS 2
is varied: As long as the inverse GTR of MS 2 is less or equal to 2, the rate of both
stations is not limited since excess bandwidth is available. When 1

g2
is ≥ 3, the CBQ

scheduler first reduces only the rate for MS 1 since it consumes more than 80% of the
total goodput. Thus, although Company A does not consume its full share of resources, its
rate is decreased in order to compensate for bad link quality of MS 2 since the unmodified
CBQ scheduler is not aware of the resources consumed! On the other hand, the H-FSC
scheduler modified according to the wireless link-sharing model is able to guarantee a
share of 80% of the resources for MS 1. Therefore, it is able to keep the SLA for both
companies independent of the modulation used by MS 2.

Whereas the amount of resources needed to transmit to both mobile stations was constant
for each single simulation in the previous series (modulation was not varied within one
simulation run), this changes when a Markov based channel simulation is used: The sim-
ulated wireless device is configured to perform up to 10 retransmissions, therefore the

3The rate for MS 1 was chosen to exceed the rate specified in its SLA but to be less than the maximum
rate possible with 80% of the link resources in a position with perfect link quality. This enables us to show
that the rate scheduled for MS 1 takes the share of resources paid for by Company A into account.

4The bounds of the 95% confidence interval for the calculated rates are not plotted in the following
graphs because the symbols used for data points are larger than the intervals at the given scale. But the
detailed results (including the confidence intervals) are included in Section A.4.3 of the Appendix.

7.3. Simulation Results 83

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10

R
at

e
[k

bi
t/s

]
Goodput for Mobile Stations (Adaptive Modulation)

MS 1, wireless H−FSC
MS 2, wireless H−FSC

MS 1, CBQ
MS 2, CBQ

Ratio of Resources to Goodput (1/g)
2

Figure 7.7: Comparison of goodput of mobile stations in Scenario 1 for the modified H-
FSC scheduler and a regular CBQ scheduler above the link layer when the modulation
used by MS 2 is varied (e.g. because MS 2 adapts to a decreasing link quality).

0

1000

2000

3000

4000

5000

6000

7000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
at

e
[k

bi
t/s

]

Goodput for Mobile Stations (Markov Channels)

MS 1, wireless H−FSC
MS 2, wireless H−FSC

MS 1, CBQ
MS 2, CBQ

Probability of State <BAD> (p)
b

Figure 7.8: Comparison of goodput of mobile stations in Scenario 1 for the modified H-
FSC scheduler and a regular CBQ scheduler above the link layer. In this case, a Markov
model simulates the wireless channel, and the probability for a bad channel state for MS 2
is varied.

84 7. Simulation

instantaneous GTR can vary between 1 and 1
11 . The average error burst length is chosen

to be 5 packets, MS 1 constantly has a good channel, and the probability for a bad channel
state pb of MS 2 is varied. Figure 7.8 illustrates that the wireless H-FSC scheduler still is
able to perform the resource-based scheduling.

Figure 7.9 shows the influence of the probability for a bad channel state of MS 2 on the
cumulative delay probability for packets sent to MS 1. For both schedulers increasing pb

for the wireless channel of MS 2 increases the probability for higher delays for MS 1.
However, Figure 7.9(b) indicates that the modified H-FSC scheduler is able to limit this
influence and guarantees a delay of about 30 ms for MS 1 independent of the link quality
for MS 2.

The reasons for this delay bound are the following: As explained in Section 5.3, the
wireless H-FSC scheduler guarantees that the deadline for a packet is not missed by more
than τmax,gmin , which is the time needed to transmit a maximum size packet at the minimum
GTR if an ideal channel monitor is assumed. In the simulated scenario, τmax,gmin is the
time needed to transmit a packet of maximum length including 10 retransmissions, which
is 14.3 ms. But the ratio channel monitor used in the simulation is not an ideal channel
monitor. It estimates the GTR for a mobile station based on the time interval between
two dequeue events. A change in channel quality is reflected by a longer time needed
to transmit the packet because of link layer retransmissions. Unlike the ideal channel
monitor, which always estimates the current channel state correctly, the ratio channel
monitor updates the state with a delay of one packet transmission. Therefore, its delay
bound is twice as large as the one of the ideal monitor. The maximum delay for a packet
to MS 1 is the delay guaranteed by the service curve plus twice the amount of τmax,gmin :

dmax,1 = 1.9ms+2 ·14.3ms = 30.5ms (7.2)

7.3. Simulation Results 85

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
um

ul
at

iv
e

D
el

ay
 P

ro
ba

bi
lit

y

Delay [ms]

CBQ: Mobile Station 1

p = 0.02
p = 0.05
p = 0.20
p = 0.50

b

b

b

b

(a) CBQ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
um

ul
at

iv
e

D
el

ay
 P

ro
ba

bi
lit

y

Delay [ms]

Wireless H−FSC: Mobile Station 1

p = 0.02
p = 0.05
p = 0.20
p = 0.50

b

b

b

b

(b) wireless H-FSC

Figure 7.9: Comparison of cumulative packet delay probabilities for MS 1 when the
probability for a bad channel state pb for MS 2 is varied. (Scenario 1)

86 7. Simulation

Agency Traffic m1 d m2

Type [Mbit/s] [ms] [Mbit/s]

VoIP 0.030 20 0.020
A WWW 0.000 20 0.050

FTP 0.000 20 0.025

VoIP 0.030 20 0.020
B WWW 0.000 20 0.050

FTP 0.000 20 0.050

Table 7.1: Scenario 2 and 3: Service curve parameters.

Link
Wireless

 A
Agency Agency

 B

1.6 Mbps

1.2 Mbps

<−<−<− <− <−<− <−<−<−<−<−

MS 1

<−

VoIP ftp VoIP

MS 1 MS P. MS 1 . . . MS 1 MS S. . . MS 1 MS T. . .MS 1 . . .

0 N 10 0 P 3 0 Q 2 0 R 30 0 S 10 0 T 2

200 kbps 150 kbps 50 kbps 600 kbps 500 kbps 100 kbps

syncsync

MS N MS Q MS R

400 kbps

www www ftp

Figure 7.10: Link-sharing hierarchy used in Scenario 2 and 3.

7.3.2 Scenario 2

In the second scenario, scheduling within a more complex hierarchy is investigated. It is
based on the example introduced in Chapter 4: The wireless link is shared by two agen-
cies, of which the first has 10 and the second has 30 mobile stations. Furthermore, three
different types of traffic exist (WWW, FTP and VoIP), which are to be treated according to
their specific QoS requirements. In Scenario 2, all classes present in the hierarchy shown
in Figure 7.10 are transmitting at their maximum rates. Table 7.1 lists the service curve
parameters for the leaf classes.

The VoIP traffic is enqueued at a constant rate of 20 kbit/s (similar to VoIP using a G.728
codec), and a packet a the head of line is dropped if it is more than 8 ms over its deadline
(drop curve of 16 kbit/s). FTP/WWW traffic is enqueued at the maximum rate following
a Poisson distribution. Table 7.2 lists the used packet sizes. All mobiles have a perfect
channel (gi=1) except for MS 2 of Agency A whose GTR is varied.

Figure 7.11 shows the influence of the transmission condition for a mobile in Agency A
on the cumulative delay probability for VoIP packets transmitted to a mobile station in
Agency B. For gms2 = 1 the system is not in an overload condition, and the scheduler is
able to guarantee a delay below 20 ms. With the decrease of gms2 (the mobile station of
Agency A needs more bandwidth in order to achieve its desired service), the scheduler has

7.3. Simulation Results 87

Traffic Type Packet Size [byte]

Voice over IP 64
WWW 512

FTP 1024

Table 7.2: Packet sizes (at network layer, including IP header) of traffic types used in
Scenario 2 and 3.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

C
um

ul
at

iv
e

D
el

ay
 P

ro
ba

bi
lit

y

Delay [ms]

g = 1.0
g = 0.5
g = 0.2
g = 0.1

Figure 7.11: Effect of gms2 (MS 2, Agency A) on the packet delay of VoIP traffic of a
mobile in Agency B. The delay of VoIP packets of the competing agency remains almost
unchanged although the link quality for MS 2 in Agency A decreases dramatically. (For
gms2 = 1.0, the system is not in an overload condition. Therefore, the VoIP traffic of all
mobile stations stations has less than is maximum delay.)

88 7. Simulation

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

D
ro

pp
ed

 P
ac

ke
ts

 [
Pe

rc
en

t]

1/g of Mobile Station 2 (Agency A)

VoIP, MS 2 (Agency A)
VoIP, MS 3 (Agency A)

VoIP, MS 20 (Agency B)

Figure 7.12: Effect of gms2 on the percentage of packets dropped for the mobile experi-
encing the bad link (MS 2), a mobile of the same Agency (MS 3), and a mobile of Agency
B (MS 20) in an overload situation. MS 20 is not affected because of the competitive
scheduling among the two agencies, and the service for MS 3 also is not reduced below
its minimal share of resources, with which in this case (gms3 = 1) it is still able to send
most packets on time.

not enough resources available to guarantee all service curves. However, the simulation
illustrates that the algorithm is able to limit the impact on a mobile in the competing
agency. Figure 7.12 compares the number of dropped packets. Since the scheduler is
able to guarantee Agency B its share of the available resources, the number of dropped
packets for a mobile station of Agency B does not significantly increase. In addition, since
the scheduler in an overload state reduces the amount of service for subclasses within a
cooperative scheduling subtree based on resource consumption, the service for a mobile
in Agency A experiencing a perfect channel is also not reduced. Note that the way in
which the hierarchical link-sharing is configured in this example assumes, that it is better
to significantly reduce the service for the customer experiencing the bad link (i.e. drop
his connection) than to reduce the VoIP share of the other mobiles below their minimal
service level.

7.4. Simulation Validation 89

Link
Wireless

 A
Agency Agency

 B

1.6 Mbps

1.2 Mbps

<− <−<−<−

MS 1 MS P MS 1 MS 1 . . .

0 T 2

200 kbps 150 kbps 100 kbps

syncsync

VoIP

MS 1 MS N

< − < <−< <− − 0 P 3 <− − < − <−0 N 10 0 Q 2 0 R 30 0 S 10

ftp VoIP

MS S MS TMS Q MS 1 MS R MS 1.

50 kbps 600 kbps 500 kbps

400 kbps

www www ftp

Figure 7.13: Active classes in Scenario 3. Only WWW traffic is sent to Agency A, and
only FTP flows are active in Agency B.

7.3.3 Scenario 3

This scenario demonstrates the effects of competitive and cooperative scheduling. For
Agency A, only WWW traffic is sent to three mobile stations (Poisson distributed, each
station receives 160 kbit/s), Agency B has two customers receiving FTP traffic (Poisson
distributed, 650 kbit/s). All other classes are idle (Figure 7.13). The mobile stations of
Agency A and the first mobile station of Agency B have a GTR of gi = 1, whereas for
MS 2 and MS 3 of Agency A the long-term channel quality is varied. In Figure 7.14,
the variation of the bandwidth available to one of the FTP customers and two WWW
customers, of which MS 1 is experiencing a constantly good and MS 2 is experiencing
a varying channel quality, is shown. The competitive scheduling among the two agen-
cies guarantees Agency B a share of 1200 kbit/s of the raw bandwidth, regardless of the
channel quality which a mobile in Agency A experiences. Since both FTP customers of
Agency B have perfect channels, each is able to achieve a goodput of 600 kbit/s.

As long as 1
g of MS 2 (and MS 3, which is not shown in the graph since it receives the same

goodput) is less than 4, excess bandwidth is available to the WWW customers of Agency
A and because the scheduler is configured to use cooperative scheduling within an agency,
it is distributed goodput-based and MS 1 and MS 2 achieve the same rate of goodput.
(Therefore, MS 2 and MS 3 are allowed to consume a larger share of resources than MS 1
in order to be able to compensate for the low link quality.) When 1

g becomes larger than 3,
not enough bandwidth is available to guarantee the service curves of all WWW customers
(50 kbit/s). Thus, the goodput of MS 2 is degraded based on its resource-consumption in
order to avoid violating the service curve of MS 1 because of the bad channel conditions
of MS 2 and MS 3.

7.4 Simulation Validation

The simulation model which was introduced in Section 7.1 abstracts from various details,
e.g. the used MAC technology. In order to validate the results of the simulations, they

90 7. Simulation

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 2 4 6 8 10 12 14 16

G
oo

dp
ut

 [
bi

t/s
]

1/g of Mobile Station 2 (Company A)

MS 1 (Company A), WWW
MS 2 (Company A), WWW
MS 11 (Company B), FTP

Figure 7.14: Goodput available for selected mobile stations in Scenario 3. As the amount
of resources needed to transmit to MS 2 (and MS 3) of Agency A increases, the goodput
available for the competing Agency B is not affected. As long as excess bandwidth is
available (1

g < 4) within Agency A, it is used to compensate the low link quality of MS 1
(and MS 3).

are compared to those obtained in the prototype measurements with IEEE 802.11 WLAN
hardware (see Chapter 8 for the details) in this section. For comparison, we concentrate
on the Raylink 2 Mbit/s FHSS cards since this was the wireless hardware mainly used in
the measurements.

The first scenario of the simulations (Section 7.3.1) is similar to the testbed environment.
It is modified in the following ways in order to make the conditions comparable to those
of the prototype measurements:

• The maximum goodput rate of the wireless interface is set to 1429 kbit/s, which is
the rate achieved by the 2 Mbit/s Raylink cards.

• By sending data to MS 1 with a rate of 1200 kbit/s and to MS 2 with 300 kbit/s, it
is guaranteed that the queues at the AP are always backlogged. The data generated
consists of UDP packets with a payload of 1024 Bytes.

• For simplicity, the simulation uses only adaptive modulation in order to vary the
GTR g2 of MS 2.

A problem when comparing prototype measurement and simulation is that the ratio of
resources to goodput (inverse GTR, 1

g) needs to be estimated for the different positions
in which measurements were done. If we approximate the GTR of the mobile station in
the perfect position (MS 1) to be equal to 1 and the queues for both mobile stations at the
AP are always backlogged, the amount of resources available for MS 2 can be computed

7.4. Simulation Validation 91

0

500000

1e+06

1.5e+06

2e+06

2 4 6 8 10 12 14

A
vg

. G
oo

dp
ut

 [
bi

t/s
]

MS 1, wireless H−FSC
MS 2, wireless H−FSC

MS 1, CBQ
MS 2, CBQ

Adaptive Modulation − Ratio of Resources to Goodput (1/g)
2

(a) Simulation

0

500000

1e+06

1.5e+06

2e+06

2 4 6 8 10 12 14

A
vg

. G
oo

dp
ut

 [
bi

t/s
]

MS 1, wireless H−FSC
MS 2, wireless H−FSC

MS 1, CBQ

Estimated Ratio of Resources to Goodput for MS 2 (1/g)

MS 2, CBQ

2

(b) Prototype measurement (Raylink
2 MBit/s FHSS cards, see page 98)

Figure 7.15: Comparison of simulation results and prototype measurement.

by subtracting the rate achieved by MS 1 from the maximum total goodput rate Bgood,max.
Therefore, the inverse GTR for MS 2 1

g2
is approximated by

1
g2

≈
Bgood,max −bgood,1

bgood,2
(7.3)

where bgood,i is the goodput rate achieved by MS i.

Using Equation 7.3, the GTR was computed from the data of the (calibrated) Raylink
measurements (Table 8.2). Figure 7.15 illustrates that the behavior of the scheduler in the
simulation is in accordance with the prototype measurements.

Furthermore, since the TCSIM simulation environment allowed us to use the almost un-
modified kernel scheduler code, we can guarantee that the scheduler used for the simu-
lations is identical to the code implementing the wireless H-FSC algorithm in the Linux
prototype.

The prototype measurements, the wireless testbed, and possible causes for the errors ob-
served are presented in more detail in Chapter 8.

92 7. Simulation

8. Measurements

This chapter presents results obtained using a prototype implementation of the proposed
algorithm within the Linux kernel (V. 2.4.13) as described in Section 6.2.

8.1 Wireless Testbed

The wireless testbed consisted of a desktop PC (AMD K6-II 500 Mhz, 64 MB RAM)
serving as the access point (AP) and two mobile stations (laptops, Celeron 550 Mhz pro-
cessor). Two different sets of wireless LAN cards were used:

1. Raylink 2 MBit/s FHSS [23]

2. Lucent/Avaya Gold 11 MBit/s DSSS [60] (128 bit RC4 WEP encryption)

The Raylink cards operate at 1 and 2 MBit/s according to the IEEE 802.11 standard [54],
the Lucent cards additionally support the 5.5 and 11 Mbit/s modes specified in IEEE
802.11b [55]. Both cards were available in a PCMCIA card version. The laptops had
internal PCMCIA card slots, whereas a PCMCIA to PCI adapter was used in the AP. For
each test run the AP and both mobile stations were equipped with the same card type.
For both WLAN cards the transmission rate was set to “auto” (card automatically selects
rate/modulation), RTS/CTS was disabled, fragmentation was disabled, and the sensitivity
threshold was the factory default. All power management features of the cards were
disabled. The WEP encryption was enabled for the Lucent/Avaya card only, since the
Raylink card does not support any kind of encryption.

In addition to the downlink scheduling, the access point also performed IP masquerading.
The ARP cache on the access point was set up statically in order to avoid side effects on
the measurements. The access point was connected to a 10 Mbit/s Ethernet, in which a
fixed host generated UDP traffic to each of the mobile destinations. For each data point
a measurement of 300 seconds was done, the bit-rates were calculated over a window of
one second. Minimum, maximum, average, and standard deviation values are computed
among the 300 windows.

94 8. Measurements

Hub

Access Point

Mobile Station 1

Mobile Station 2

Source

! Power

COL 1 2 3 4 5 6 7 8 1 2 3 6 25 50 8012

100

10

Ether 10/100

Figure 8.1: The wireless testbed and main test scenario. While Mobile Station 1 (MS 1)
was constantly in a perfect position, the position of Mobile Station 2 (MS 2) was varied
during a measurement series.

8.2 Test Scenario
The unique property of the proposed algorithm is that it allows a resource-consumption
aware scheduling in a link layer independent way. By combining it with well known good-
put oriented link-sharing, the flexible hierarchical wireless link-sharing model presented
in the previous chapters can be achieved. Therefore, the focus of the testbed measurements
is on demonstrating that resource-consumption oriented scheduling with the proposed al-
gorithm can be done with currently available IEEE 802.11 hardware. To our knowledge,
none of the other currently discussed algorithms has shown this ability in a IEEE 802.11
testbed yet.

The main test scenario is rather simple and similar to the one presented in Section 7.3.1:
The scheduler was configured to share the link on a resource-based criterion by using a
separate synchronization class for each mobile/company: 80% of the link resources were
assigned to MS 1 and 20% to MS 2. As a comparison, the same setup was used with the
CBQ scheduler included in the kernel, configured to share the link in the same ratio.

The fixed host generated constant bit-rate traffic in UDP packets with a payload of 1024
bytes1 to both mobile stations at a high rate (3 Mbit/s for MS 1, 1 MBit/s for MS 2 in
Raylink tests and 6 Mbit/s for MS 1, 1.5 MBit/s for MS 2 in Lucent/Avaya tests) guar-
anteeing that the classes of both mobile stations were always backlogged. This was also
verified using the traffic control statistics.2 MS 1 was constantly in a good position, and
the position of MS 2 was varied. Since the wireless card only reports the link quality

1This size was chosen in order to approximate an “average packet size” seen in typical Internet traffic,
which usually consists of a large number of small (< 100 bytes) packets and a smaller number of large
packets (≈1500 bytes – the maximum IP packet size in an Ethernet), which still are responsible for the
majority of the IP traffic (in terms of bytes) [32].

2command “tc -s class show dev device”

8.3. Raylink 2 MBit/s Cards (without calibration) 95

60000

80000

100000

120000

140000

160000

180000

200000

80 90 100 110 120 130 140 150 160 170

G
oo

dp
ut

 [
by

te
/s

]

Raylink Wireless LAN Card (2 MBit/s)

Wireless Channel Monitor Signal to Goodput Mapping

Signal Level

Figure 8.2: Estimated signal level to goodput mapping for Raylink card (2 Mbit/s, FHSS)
used in an early stage of the prototype.

to a mobile station when a packet is received, the mobile clients were forced to send an
ICMP echo reply every second.3 All packets correctly received at the mobile stations were
recorded with timestamp and delay information. The setup is illustrated in Figure 8.1.

Optimal Behavior

The optimal behavior of a resource-based scheduler in this scenario is the following: Since
both mobile stations constantly consume all resources available for them (queues are al-
ways backlogged), the goodput can be used to determine the amount of resources sched-
uled for a station: Because the position of MS 1 is not varied, its GTR is constant during
the experiment. If a constant fraction of 80% of the available resources is scheduled for
MS 1, its goodput should also be constant and independent of the position of MS 2.

Since the amount of resources scheduled for MS 2 is also constant but more resources
are needed to transmit to a bad position, its goodput will decrease with decreasing signal
quality. This decrease will be more significant than in a goodput oriented scheduling
scenario, which would allow MS 2 to increase its share of resources. Note that this does
not mean that MS 2 is punished for its bad position: it gets a constant share of 20% of the
available resources.

8.3 Raylink 2 MBit/s Cards (without calibration)

The majority of the tests were conducted using the 2 MBit/s Raylink WLAN cards. As
described in Chapter 6, the wireless channel monitor estimates the consumed resources
based on the signal level to a mobile destination. In an early stage of the project [68], this
was based on a few single goodput measurements. Figure 8.2 illustrates this estimation.

3Because of the small size of the ICMP packets (56 Bytes) and the extremely low rate of one packet per
station per second, its influence on the goodput measurements can be neglected in our test scenario.

96 8. Measurements

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

very good medium/bad bad

A
vg

. G
oo

dp
ut

 [
bi

t/s
]

Position of MS 2

MS 1, modified HFSC
MS 2, modified HFSC

MS 1, CBQ
MS 2, CBQ

Figure 8.3: Early prototype results without calibration. The resource-based scheduling
decreases the influence of channel quality of MS 2 on the amount of resources available
for MS 1.

Even with this simple and inaccurate approach, the new modified H-FSC scheduler is able
to decrease the influence of the position of MS 2 on the amount of resources available for
MS 1 as shown in Figure 8.3. (Note that in these first measurements 100 Byte UDP
packets were used. Therefore, the total achieved goodput is not directly comparable to
later experiments, only the relative shares of total goodput achieved by MS 1 and MS 2
can be compared.) Table 8.1 lists the average bit-rates, the bounds of the 95% confidence
interval, the minimum bit-rates, and the standard deviation s.

8.4 Raylink 2 MBit/s Cards (with calibration)

Since the approach of “guessing” the signal to goodput mapping seemed too inaccurate, a
method of measuring the mapping and calibrating a wireless channel monitor was intro-
duced (see Section 6.4). Figure 8.4 shows the calibration profile obtained for the Raylink
cards. Note that although – as shown in Chapter 6, Figure 6.10(a) – the goodput drops to
≈ 0 for levels below 100, it is mapped to a value of 5 kbyte/s in order to avoid completely
blocking the queue for MS 2.4 In this and all following measurements, 1024 byte UDP
packets were used instead of the 100 byte packets of the first measurements in order to
create a more realistic scenario. Although this does not influence the basic behavior of the
scheduler, it increases the achievable total goodput since the relative length of the header
is shorter.

With the calibrated channel monitor the bandwidth available for MS 1 remains almost
constant, indicating that the scheduler is able to schedule a constant fraction of 80% of the
available resources for MS 1 as shown in Figure 8.5. The small but continuous increase of

4This number can be chosen using the following rule of thumb: Assume that the wireless device needs k
milliseconds before aborting the transmission of a packet to a mobile station and m milliseconds to transmit
to a station under perfect conditions. Then the minimal goodput rate in the profile should be the maximal
achievable goodput rate divided by k

m .

8.4. Raylink 2 MBit/s Cards (with calibration) 97

Position Mobile Scheduler Average 95% CI Min. Max. Std. Dev.
MS 2 Station [kbit/s] [kbit/s] [kbit/s] [kbit/s] [kbit/s]

mHFSC 1022 ± 5 849 1212 421
CBQ 949 ± 2 870 1048 18

good
mHFSC 154 ± 3 80 228 302

CBQ 228 ± 1 198 257 10

mHFSC 877 ± 9 634 1233 801
CBQ 580 ± 7 384 727 58

med./bad
mHFSC 68 ± 2 30 114 142

CBQ 138 ± 2 46 232 20

mHFSC 1048 ± 12 329 1203 1081
CBQ 270 ± 2 215 321 19

bad
mHFSC 0 - 0 0 -2

CBQ 0 - 0 0 -

Table 8.1: Comparison of first results obtained using an early prototype implementa-
tion of the modified H-FSC algorithm (mHFSC) without calibration with those of a not
wireless aware CBQ scheduler.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

80 90 100 110 120 130 140 150 160 170

G
oo

dp
ut

 [
by

te
/s

]

Signal Level

Raylink Wireless LAN Card (2 MBit/s)
Wireless Channel Monitor Signal to Goodput Mapping

Figure 8.4: Signal level to goodput mapping for Raylink card (2 Mbit/s, FHSS) obtained
using the WchmonSigMap calibration tool described in Section 6.4.

98 8. Measurements

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

very good good medium/good medium medium/bad bad

A
vg

. G
oo

dp
ut

 [
bi

t/s
]

Position of MS 2

MS 1, modified HFSC
MS 2, modified HFSC

MS 1, CBQ
MS 2, CBQ

Figure 8.5: Prototype results for Raylink with calibration. For the modified H-FSC al-
gorithm the bandwidth available for MS 1 remains almost constant when the position of
MS 2 is varied.

the rate for MS 1 with decreasing signal quality of MS 2 means that the channel monitor
has a tendency to overestimate the amount of resources needed to transmit to MS 2. If
the position in which MS 2 has no signal at all (and therefore will not mind getting less
then its share) is not taken into account, the maximum error occurs when MS 2 is in the
“medium/bad” position. Here, MS 1 receives 68 kbit/s more goodput than it should (Table
8.2), which is an error of less than 6%.

Since in this case MS 2 is in a position where its GTR5 is less than 0.17, this means that
MS 2 receives about 11 kbit/s less goodput than it should. (In addition, we assume that the
results could be improved further by manually adapting the signal level to goodput map-
ping, e.g. by slightly increasing the values for low levels in order to correct the estimations
of the channel monitor.)

If a regular CBQ scheduler is used, which does not take the resource-consumption into
account, MS 2 can decrease the available goodput for MS 1 by up to 809 kbit/s, which
means that MS 2 can consume up to 77% of the available resources, although it pays only
for 20%. Therefore, the resource-based scheduling possible with the modified H-FSC
scheduler increases the available goodput for MS 1 by up to 340%, compared to a CBQ
scheduler above the link-layer, in this simple scenario.

The detailed results are listed in Table 8.2.

8.5 Lucent/Avaya 11 MBit/s Cards (with calibration)
A limited series of tests was also run with the 11 MBit/s Lucent/Avaya cards. These cards
use a different spread spectrum technology6 and support higher data rates. Therefore, the

5Since the scheduler is work-conserving, this can be estimated by dividing the goodput achieved in this
position by the goodput seen in the good position, where GTR is assumed to be approximately one. Of
course, the observed error of scheduling 68 kbit/s more for MS 1 has to be taken into account, which means
an estimation of a GTR for MS 2 of gMS2 ≈

35
285−68 = 0.16.

6Direct-Sequence Spread Spectrum (DSSS) instead of Frequency-Hopping Spread Spectrum (FHSS)

8.5. Lucent/Avaya 11 MBit/s Cards (with calibration) 99

Position Mobile Scheduler Average 95% CI Min. Max. Std. Dev.
MS 2 Station [kbit/s] [kbit/s] [kbit/s] [kbit/s] [kbit/s]

mHFSC 1135 ± 4 757 1372 351
CBQ 1137 ± 3 1035 1203 23

very good
mHFSC 285 ± 2 260 496 142

CBQ 285 ± 2 252 480 17

mHFSC 1130 ± 10 370 1363 891
CBQ 1098 ± 3 1002 1178 28

good
mHFSC 227 ± 8 42 934 682

CBQ 274 ± 2 244 421 15

mHFSC 1160 ± 11 917 1380 961
CBQ 913 ± 15 151 1439 129

med./good
mHFSC 120 ± 5 17 362 472

CBQ 225 ± 7 126 67 63

mHFSC 1180 ± 15 564 1439 1311
CBQ 759 ± 13 412 98 113

medium
mHFSC 94 ± 6 8 404 552

CBQ 217 ± 4 110 547 36

mHFSC 1203 ± 20 732 1439 1751
CBQ 587 ± 14 269 901 120

med./bad
mHFSC 35 ± 4 8 328 332

CBQ 120 ± 5 8 244 42

mHFSC 1286 ± 5 1060 1439 481
CBQ 328 ± 8 17 766 71

bad
mHFSC 0 - 0 0 -2

CBQ 0 - 0 0 -

Table 8.2: Detailed results for the 2 MBit/s Raylink cards with the calibrated channel
monitor.

100 8. Measurements

0

100000

200000

300000

400000

500000

600000

700000

0 5 10 15 20 25 30 35 40 45 50

G
oo

dp
ut

 [
by

te
/s

]

Signal Quality

Lucent/Avaya Wireless LAN Card (11 MBit/s)
Wireless Channel Monitor Signal to Goodput Mapping

Figure 8.6: Link quality level to goodput mapping for Lucent card (11 Mbit/s, DSSS)
obtained using the WchmonSigMap calibration tool described in Section 6.4.

signal to goodput mapping shown in Figure 8.6 cannot be directly compared with that of
the Raylink cards.

In addition to reporting the signal strength, the Lucent/Avaya card also reports a link
quality level, which is computed as relation of signal level to noise level. This quality level
was chosen as the basis for the calibration and goodput estimation since it was assumed it
would be a more accurate indicator for the achievable goodput.

Figure 8.7 and Table 8.3 show that, although the position of MS 2 has a significant influ-
ence on the goodput of MS 1, the wireless HFSC scheduler provides MS 1 with more than
220% of the goodput of a regular link-sharing scheduler above the link layer, even in the
“medium/bad” position. The reason for the still suboptimal behavior seems to be that the
channel monitor underestimates the amount of resources needed to transmit to a mobile
station in a less than optimal position. This could be caused by an inaccurate mapping of
quality level to goodput or by the fact that the interval for the channel status update was
chosen too large for the higher data rates.

Additional Scenario: Both Mobile Stations in Medium Position

An additional test was done in order to verify the behavior in the case where both mobile
stations are in a similar position where they experience a limited signal. Both MS were
placed in the “medium/good” position.

In this case, the modified H-FSC scheduler as well as CBQ scheduled a fraction of 80% of
the total goodput for MS 1 and a fraction of 20% for MS 2. This is the expected behavior
since both stations have the same GTR. (As it was the case in the previous scenarios, when
both stations were in the “good” position.)

8.6 Summary of Experimental Results
The results demonstrate that the algorithm is able to perform resource-based scheduling
on currently available IEEE 802.11 hardware. If an accurate mapping of signal strength to

8.6. Summary of Experimental Results 101

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

good medium−good medium−bad bad

A
vg

. G
oo

dp
ut

 [
bi

t/s
]

Position of MS 2

MS 1, modified HFSC
MS 2, modified HFSC

MS 1, CBQ
MS 2, CBQ

Figure 8.7: Results for Lucent WLAN cards (11 Mbit/s, DSSS) with calibration.

Position Mobile Scheduler Average 95% CI Min. Max. Std. Dev.
MS 2 Station [kbit/s] [kbit/s] [kbit/s] [kbit/s] [kbit/s]

mHFSC 3866 ± 33 2608 4721 2881
CBQ 3878 ± 33 2474 4780 288

good
mHFSC 983 ± 3 833 1018 272

CBQ 986 ± 3 825 1018 29

mHFSC 3306 ± 65 1060 4914 5781
CBQ 1518 ± 28 740 2449 245

med./good
mHFSC 174 ± 8 8 446 742

CBQ 433 ± 8 151 706 71

mHFSC 2022 ± 96 67 5310 8481
CBQ 888 ± 20 513 1380 180

med./bad
mHFSC 158 ± 7 8 337 662

CBQ 197 ± 10 8 412 87

mHFSC 4225 ± 60 437 5377 5271
CBQ 630 ± 4 497 825 37

bad
mHFSC 0 - 0 0 -2

CBQ 0 - 0 0 -

Table 8.3: Detailed results for the Lucent/Avaya 11 MBit/s wireless cards.

102 8. Measurements

goodput is used, it can keep the average amount of resources available for a mobile station
almost constant. Fine-tuning of factors such as the optimal update interval of the channel
status, knowledge about the way in which the wireless card adapts its modulation scheme,
etc. is likely to improve the estimations of the wireless channel monitor and therefore the
accuracy of the scheduler.

9. Summary and Conclusions

At the core of any QoS architecture is a scheduling algorithm which distributes the avail-
able bandwidth among companies, users, and applications. Mechanisms for controlled
link-sharing and quality of service support are currently implemented above the link layer
in local area networks conforming to the IEEE LAN standards. This assumes that send-
ing a specific amount of data consumes the same amount of resources for each destination
node. While this is valid for wireline networks, in the case of wireless LANs the resource-
consumption depends on the quality of the wireless link for a mobile station and is highly
variable due to retransmissions, adaptive modulation, and other error correction mecha-
nisms. Therefore, this approach is unable to guarantee a constant level of service for a
mobile station since the scheduler is not aware of the amount of resources needed by the
link layer to transmit to a mobile host.

The majority of the currently discussed packet scheduling algorithms for wireless net-
works probe the wireless channel towards a specific destination before sending a packet,
deferring transmission if the channel is in a bad state. Meanwhile a mobile station which
has a good channel is serviced. Various techniques have been developed to compensate
at a later point in time a station which experienced a bad channel in the past. In order
to be able to perform channel probing and be aware of retransmissions, these algorithms
have to be integrated in the link layer, which makes them hard to deploy over currently
available hardware. While it seems feasible that some kind of channel-state dependent
scheduling will be integrated in future wireless link layers, the configuration of complex
link-sharing hierarchies would best be handled in a more hardware independent way, i.e.
as part of the operating system.

This thesis presented a new approach to use long-term information about the channel-
state of a mobile station in order to improve the controlled sharing of a wireless link. The
link layer independent scheduler estimates the resources needed to transmit to a given
destination based on its recent knowledge on the channel quality for each mobile station
sharing the link. Using this information, two types of wireless scheduling are possible:
goodput-based (cooperative) scheduling and resource-consumption based (competitive)
scheduling. Since neither technique by itself is sufficient to describe wireless link-sharing
hierarchies adequately, a new link-sharing model was introduced, which makes it possible
to integrate both types in a single hierarchy by using synchronization classes.

104 9. Summary and Conclusions

The Hierarchical Fair Service Curve Algorithm (H-FSC) was modified according to this
wireless link-sharing model. The modified algorithm adapts the service curves for a mo-
bile station depending on its resource-consumption and the resources consumed by other
mobiles stations in the same cooperative scheduling subtree. Simulations confirm that the
algorithm is able to guarantee a specific amount of resources to a customer and therefore
can be used to equalize the cost per revenue for an ISP.

In order to demonstrate that the algorithm can be used with currently available wireless
technology, a Linux based prototype was developed. The Linux traffic control architecture
was extended to support the implementation of channel-state dependent scheduling for a
wireless network interface. A wireless channel monitor component was introduced, which
monitors the capacity of a wireless link using signal strength information provided by a
modified device driver. Since the relation of the signal strength reported by the device
driver to the available capacity of the wireless channel is hardware dependent, a method
to calibrate a wireless channel monitor was developed.

Based on the code of the H-FSC scheduler available for FreeBSD, the wireless H-FSC
variant was implemented within this framework. The prototype implementation was
tested with two different kinds of wireless network cards: The majority of measurements
were done using Raylink 2 Mbit/s FHSS cards conforming to the original IEEE 802.11
standard. Additional results obtained with 11 Mbit/s Lucent DSSS cards using the higher
data rates specified in IEEE 802.11b demonstrate that the algorithm does not depend on
a specific type of wireless network card. Prototype results for a simple resource-based
scheduling scenario are in accordance with simulation results and demonstrate that the
algorithm is able to perform resource-based scheduling on standard hardware. Using the
Raylink cards and a calibrated wireless channel monitor, the scheduler is able to provide
an almost constant fraction of resources to a customer. In test scenarios with a good and a
very bad link, this improves the goodput for the customer with a good link by up to 340%
compared to a conventional goodput-based scheduling above the link layer.

Future Research

Our measurements indicate that in some cases – especially if the 802.11b Lucent cards
are used – the estimations of our wireless channel monitor are not very accurate. Taking
more information available at the device driver level (e.g. type of modulation, number
of retransmissions) into account should improve the information provided by the channel
monitor.

Furthermore, a promising extension of the presented wireless link-sharing model would
be to combine it with a short-term channel-state dependent scheduling at the link layer
level: Most wireless network cards already buffer a small number of packets. Rather than
sending these packets in FIFO order, the network card could probe the channel and try
to avoid transmitting packets on channels in a bad state. This would require no modi-
fication of the proposed architecture – the hierarchical wireless link-sharing would still
be enforced above the link layer – and is likely to result in increasing the total system
goodput.

A. Kernel Configuration and Developed
Testbed Tools

A.1 Access Point Setup - A To-Do List
The following list summarizes the necessary steps to set up a freshly installed Linux
system1 for using the developed kernel extensions and modified H-FSC scheduler:

1. Download and unpack the following packages:

• Modified H-FSC scheduler and Linux wireless scheduling patches (the proto-
type implementation developed as part of this work) [66]

• Linux 2.4.X kernel sources [25]
(patch was developed for 2.4.13 but should work with all 2.4.X kernels)

• iproute2 sources (Version 001007 or newer) [27]

• PCMCIA card services (Version 3.1.29 or newer) [46]
(Only necessary if the wireless channel monitor “driver” is to be used.)

• optional for packet scheduling simulations: TCSIM [1]

2. Apply our kernel patch in the kernel source directory.

3. Configure (Section A.2), compile, and boot the kernel.

4. Apply our iproute2 patch in the iproute2 directory.

5. Compile and install the iproute2 package.

6. For wireless scheduling with device driver support:

• If a Lucent/Avaya or Raylink card is available, replace the corresponding driver
in the PCMCIA card services directory with their modified versions. If a dif-
ferent wireless card is used, modify its device driver to include calls to the
wireless channel monitor interface (see Table 6.5 in Chapter 6).

1It is assumed that the wireless card is correctly installed and all other desired features besides the QoS
scheduling (e.g. routing, DHCP, network address translation) are configured and tested.

106 A. Kernel Configuration and Developed Testbed Tools

• Compile and install the PCMCIA card services.
(One can verify that the correct version of the PCMCIA card services is used
by the fact that a “make config” shows “Wireless scheduling support is en-
abled.” and “Support for wireless channel monitoring is enabled.” in the list
of configured options.)

• Calibrate the used wireless card with the calibration tool. (Section A.3.1)

7. Configure the desired link-sharing hierarchy using the tc program (command line
options for the modified H-FSC algorithm are listed in Section 6.3).

A.2 Kernel Configuration

Table A.1 lists the settings of relevant configuration constants when compiling the kernel
sources using make config, make xconfig or make menuconfig. The queue, sched-
uler, and classifier options correspond to those listed in Section 6.1.1, and although it is
only necessary to activate those which will later be used at the node, it is recommended to
compile all of them as modules by selecting [m] whenever possible. Thus, all components
are available without wasting precious kernel memory, and one does not have to compile
the kernel again when a component is needed whose usage was not anticipated.

Options printed in italics are only available if the wireless scheduling patch developed as
part of this project (see Chapter B) has been applied.

Clock Source Configuration

A configuration setting which currently cannot be selected via the well-known kernel
configuration tools is the setting of the kernel clock source. This determines the way in
which the kernel/a kernel module obtains information about the current time. It can be
done by using the current jiffie count (a global kernel variable, which is periodically
increased by the timer interrupt), by using the gettimeofday routine, or by relying on the
CPU timestamp function, which is available on most modern processors (it was introduced
with the Intel Pentium processor). The setting is configured in ./net/pkt_sched.h in
the kernel source directory and should be set to PSCHED_CPU. All other choices are not
accurate enough to guarantee precise scheduling.

A.2. Kernel Configuration 107

Question Option Setting

Prompt for development and/or CONFIG_EXPERIMENTAL [y]
incomplete code/drivers?
Kernel/user netlink socket CONFIG_NETLINK [y]
Routing messages CONFIG_RTNETLINK [y]
TCP/IP networking CONFIG_INET [y]
QoS and/or fair queueing CONFIG_SCHED [y]
CBQ packet scheduler CONFIG_NET_SCH_CBQ [m] (or [y])
CSZ packet scheduler CONFIG_NET_SCH_CSZ [m] (or [y])
The simplest prio pseudoscheduler CONFIG_NET_SCH_PRIO [m] (or [y])
RED queue CONFIG_NET_SCH_RED [m] (or [y])
SFQ queue CONFIG_NET_SCH_SFQ [m] (or [y])
TEQL queue CONFIG_NET_SCH_TEQL [m] (or [y])
TBF queue CONFIG_NET_SCH_TBF [m] (or [y])
GRED queue CONFIG_NET_SCH_GRED [m] (or [y])
Diffserv field marker CONFIG_NET_SCH_DSMARK [m] (or [y])
Ingress qdisc CONFIG_NET_SCH_INGRESS [m] (or [y])
QoS support CONFIG_NET_QOS [y]
Rate estimator CONFIG_NET_ESTIMATOR [y]
Packet classifier API CONFIG_NET_CLS [y]
TC index classifier CONFIG_NET_CLS_TCINDEX [m] (or [y])
Routing table based classifier CONFIG_NET_CLS_ROUTE4 [m] (or [y])
Firewall based classifier CONFIG_NET_CLS_FW [m] (or [y])
U32 classifier CONFIG_NET_CLS_U32 [m] (or [y])
Special RSVP classifier CONFIG_NET_CLS_RSVP [m] (or [y])
Special RSVP classifier for IPv6 CONFIG_NET_CLS_RSVP6 [m] (or [y])
Traffic policing (needed for ingress/egress) CONFIG_NET_CLS_POLICE [m] (or [y])

H-FSC packet scheduler CONFIG_NET_SCH_HFSC [m] (or [y])
Wireless scheduling support CONFIG_NET_WIRELESS_SCHED [y]
channel-state aware FIFO queue (CSFIFO) CONFIG_NET_SCH_CSFIFO [m] (or [y])
simple wireless channel simulator (CHSIM) CONFIG_NET_SCH_CHSIM [m] (or [y])
dummy - wireless channel monitor (dummy) CONFIG_NET_WCHMON_DUMMY [m] (or [y])
ratio - wireless channel monitor (ratio) CONFIG_NET_WCHMON_RATIO [m] (or [y])
driver - wireless channel monitor (driver) CONFIG_NET_WCHMON_DRIVER [m] (or [y])

Table A.1: Kernel configuration options.

108 A. Kernel Configuration and Developed Testbed Tools

A.3 Developed Testbed Tools
In the following, the usage of a few additional tools developed for the wireless testbed is
described in more detail.

A.3.1 Wireless Channel Monitor Calibration Tool

As mentioned in Section 6.4, the amount of goodput which can be achieved by a mobile
station in a location where a specific signal level is indicated depends on many factors,
e.g. the type of device which is used, its configuration settings, etc. In order to be able
to parameterize a wireless channel monitor accurately, a calibration tool was developed,
which records the goodput for a mobile station in relation to its link level. This tool, the
Wireless Channel Monitor Signal to Goodput Mapper (WchmonSigMap), and its usage
are briefly presented in this section.

Installation

The tool is a Java 2 application and requires a working installation of the Sun Java 2
runtime environment [59]. After unpacking the source archive in a local directory, the
tools can be compiled with make all. (It is assumed that the Java compiler javac and
the virtual machine java are in the path – if this is not the case, adapt the corresponding
variables within the Makefile.) This generates the necessary java .class files and a
native library WchmonSigMap_Wstats.so, which performs the IOCTL calls using the
Linux wireless extensions [61] via the Java Native Interface (JNI). This library is copied
to /usr/lib as part of the make process. The main application is started with java
WchmonSigMap.WchmonSigMap in the directory of the application, the simple UDP packet
generation tool is executed with java WchmonPackGen.

Configuration

When the WchmonSigMap application is started, the main window appears as shown in
Figure A.1. If signal level, quality, and noise level are all 0, the application was not
able to read the statistics from /proc/wireless. In this case, the program needs to be
configured using the File→Configure option (Figure A.2).

The following options can be changed:

• Interface: The name of the wireless network interface. (default: eth1)

• Signal Quality Indicator: The property which characterizes the current link qual-
ity. In case the card provides a signal quality byte this usually is “quality”. If the
card provides only the signal level indicator (e.g. the Raylink card), it should be set
to “signal”. This must be set to the same property which is sent by the modified
device driver (see Section 6.4) to the wireless channel monitor. (default: quality)

• Size of Avg. Window: Number of packets over which the goodput-average is esti-
mated. Increase this value if goodput measurements for the same quality level are
highly varying, decrease the value for more accuracy in case of varying levels (e.g.
if the test mobile is moving). (default: 100)

If the configuration is valid, it will be accepted upon pressing the “OK” button, otherwise
an error message box is shown. Besides these options, the main screen allows the adjust-
ment of the port on which the application listens for incoming packets and the tuning of
the time interval in which statistics are read from the wireless device.

A.3. Developed Testbed Tools 109

Figure A.1: WchmonSigMap, the channel monitor calibration tool.

Figure A.2: Configuring the calibration tool.

Note: Signal Levels in Ad-Hoc Mode

Some wireless device drivers (e.g. the wvlan_cs driver for the Lucent cards) do not
provide status information if the card is running in ad-hoc mode. In this case, use the
iwspy program of the wireless tools to add the IP address of your access point to the spy
list: e.g. iwspy eth1 +192.168.23.254. Verify that status information is available with
iwconfig eth1.

Measuring Goodput

Deactivate all mobile stations except the one which runs the calibration tool. In the View
menu activate the goodput graph and any other information you would like to observe.
Select the port on which the calibration tool is supposed to listen for incoming UDP pack-
ets (default: 8000) and start generating UDP traffic2 with the maximum rate at the access
point to this port on the mobile station so that the wireless link is always saturated. For
this purpose, the wchmonPackGen tool described in A.3.2 can be used or any other similar
tool (e.g. mgen). The size of the generated packets should be similar to that of the average
packets used in your wireless applications. Then click on the “Start Calibration” but-
ton. The application will start displaying the number of received packets and the current
goodput rate in the upper right corner (Figure A.3). Move the mobile station to different
locations with a wide range of signal levels (observe the level/goodput graphs). For re-
liable measurements, the station should stay at each location for at least 20-30 Minutes.
The measurements can be stopped/interrupted using the “Stop” button.

2For calibrations done as part of this thesis, UDP packet size was 1024 Bytes (since this was also the
size of data packets generated in the prototype measurements) and rates were calculated over a window of
100 packets.

110 A. Kernel Configuration and Developed Testbed Tools

Figure A.3: Measuring goodput using the calibration tool.

Figure A.4: Editing the results.

A.4. Extended Simulation Environment - Examples/Additional Information 111

Figure A.5: Simple UDP packet generation tool.

Manually Editing the Table

The results can be inspected and edited by selecting Edit→Edit table. . . (Figure A.4).
Note that the tool assumes a minimal goodput of 5000 byte/s, which is necessary in order
to avoid that a scheduler completely blocks sending data to a mobile destination. In ad-
dition, if no data for a specific level is available (number of samples is 0), its goodput is
assumed to be at least as good as the next available measurement of a lower level.

Saving, Loading and Exporting the Data

Tables are saved in the same format which is used by the wireless channel monitor driver
(Section 6.4). Therefore, they can simply be copied to /proc/net/wchmon_gtr_map in
order to update the estimates of an installed wireless channel monitor module. Export in
an ASCII format (e.g. for GnuPlot) is also possible.

A.3.2 Simple UDP Packet Generator

A simple tool which can be used to generate UDP packets to the mobile station running
the calibration utility is the Simple UDP Packet Generator shown in Figure A.5. (For
requirements and installation see Section A.3.1.) It is started with the command java
WchmonPackGen and continuously generates UDP packets of the specified size at the max-
imum rate. The destination port setting must match the port setting of the calibration tool.

A.4 Extended Simulation Environment - Examples/Ad-
ditional Information

In the following, additional examples and ideas concerning the simulation environment
are presented.

A.4.1 Note: Kernel-Level Simulation of Wireless Channels

This subsection describes an additional application of the wireless channel simulation
queuing discipline, which is a side-effect of the way it was implemented. It was not
used as part of the thesis work and was only rudimentarily tested, but we believe that
this approach could simplify the testing of new wireless protocols implemented above or
within the network layer.

The evaluation of the performance of network layer, transport layer, or application layer
protocols used over a wireless link is often very problematic because of the fast and un-
controllably changing conditions of the wireless environment. Since the exact conditions
of a measurement setup are hard to reproduce, evaluation is often done by implementing

112 A. Kernel Configuration and Developed Testbed Tools

Physical
Network Interface Card

Link
Device driver, MAC

FTP, WWW browser, etc.

Application

Physical
Network Interface Card

Link
Device driver, MAC

Simulation Qdisc
Wireless Channel

Simulation Qdisc
Wireless Channel

Network
IP/ICMP/IGMP, IPX, etc.

FTP, WWW browser, etc.

Application

Network
IP/ICMP/IGMP, IPX, etc.

New Transport
Protocol

New Transport
Protocol

100 MBit Ethernet

Figure A.6: Example for the performance evaluation of a new/improved transport proto-
col using the wireless simulation queuing discipline.

them in a simulation environment approximating the behavior of the lower layer protocols
and the wireless link.

Since the channel simulation queuing discipline presented in Section 7.2.1 has the in-
terface of a regular queuing discipline and requires only that it is polled regularly by a
constant bit-rate interface, it can also be used in a real kernel environment. If it is used
as the root queuing discipline on a standard wireline network interface, whose bandwidth
is considerably larger than that of the simulated wireless device, the additional effects of
the wireline transmission are small. Such a setup has various advantages compared to the
pure simulation or measurement approaches:

1. By parameterizing the wireless channel model, exactly the desired link behavior
can be simulated.

2. Channel conditions are reproducible.

3. The protocol does not have to be implemented separately for the simulation since
the same implementation can be used for simulation and measurements.

4. In case of a transport or application layer protocol, the actual implementation of
lower layer (network/network and transportation layer) protocols is used, not a sep-
arate simulated version.

5. The simulated wireless device can be used to evaluate the behavior of the higher
layer protocol on technologies not yet available.

An example for the performance evaluation of a transport protocol which is used on a
simulated wireless link is shown in Figure A.6. While the basic idea of simulating a
desired device behavior in the kernel is not new (e.g. the so called softlink device, which
is able to direct packets to user space for manipulation, can be used for this purpose), using
a qdisc for this purpose has two advantages: The different parts of traffic control can be
flexibly combined to create the desired system behavior, and the implemented channel
model can be tested in user space (using TCSIM) as well as in kernel space. Furthermore,
the traffic control layer is the last device independent layer of the operating system and is
destined for delaying and reordering of packets.

A similar system was proposed by Noble et. al. in [43], where a trace collected in a sim-
ulation environment is used to emulate the behavior of a wireless LAN within a wired

A.4. Extended Simulation Environment - Examples/Additional Information 113

network. In contrast to their approach, our “simulation qdisc” performs the wireless sim-
ulation within the kernel avoiding the need to generate simulation traces beforehand.

A.4.2 Example for Usage of Wireless Simulation Qdisc

Listing A.1 shows how the chsim queuing discipline is used in TCSIM to simulate schedul-
ing in a wireless environment.

Listing A.1: Example: Using the wireless channel simulation qdisc.

/∗ csfifo_on_chsim
∗
∗ Linux Wireless Scheduling Example − CSFIFO

5 ∗
∗ goodput optimizing wireless fifo qdisc using the " ratio "
∗ wireless channel monitor and running on the wireless
∗ channel simulation qdisc
∗/

10

#include " ip . def"

/∗
∗ define packets

15 ∗/

#define PACKET(ms) UDP_PCK($src=10.0.0.1 $dst=10.0.0.##ms \
$sport=PORT_USER $dport=PORT_HTTP)

20 #define PAYLOAD(n) (n) x 980 /∗ +header = 1000 bytes ∗/

dev eth0 1400 /∗ 1.4 Mbit/s ∗/

25 /∗ Installing the channel monitor module can only be done after
the "dev" command! We are using the “ ratio ” monitor . ∗/

insmod / usr / src / tcng / tcsim /modules/wchmon_ratio.o

30 /∗ Setup TC architecture ∗/
/∗ (This is for testing only ... just arbitrary values .) ∗/

/∗ First we set up the wireless channel simulation qdisc
including the default wireless channel : ∗/

35

tc qdisc add dev eth0 root handle 1:0 chsim limit 1 p_gb 0.04 \
p_bg 0.3 e_P 0.7 avg_size 1000 max_retrans 12 channel_rate \
1400kbit clear_dst_addr

40 /∗ Add another simulated channel , bad quality ∗/
tc class add dev eth0 parent 1:0 classid 1:30 chsim p_gb 0.1 \

p_bg 0.05 e_P 0.9

114 A. Kernel Configuration and Developed Testbed Tools

/∗ And a third channel which has very good quality ∗/
45 tc class add dev eth0 parent 1:0 classid 1:20 chsim p_gb 0.0001 \

p_bg 0.5 e_P 0.5

/∗ Now the filters , which select the packet for each channel , are
set up . While in a running system the selection would be based

50 on the MAC address, we identify the different destinations by
their IP address in the simulation . It does not matter since
it is a one to one mapping of IP to MAC address by ARP anyway,
and we are able to use the existing filters this way. TCSIM
also has no way to specify the MAC address of a packet that

55 is sent . ∗/

tc filter add dev eth0 parent 1:0 protocol ip u32 match \
ip dst 10.0.0.1 flowid 1:20

tc filter add dev eth0 parent 1:0 protocol ip u32 match \
60 ip dst 10.0.0.2 flowid 1:30

/∗ −
Now the setup of our simulated wireless environment is done
and we start setting up the packet scheduling on top of it

65 − ∗/

/∗ We add the csfifo qdisc to schedule on the simulated
the wireless channel (note : limit for csfifo in packets !) ∗/

70 /∗ a) the " real " CS−FIFO ∗/
tc qdisc add dev eth0 parent 1:0 csfifo wchmon ratio \

limit 20 lookahead 20 probe 500 threshold 10 probability 0.7

/∗ b) a usual FIFO (uncomment it for comparison)
75 tc qdisc add dev eth0 parent 1:0 pfifo limit 20 ∗/

/∗ Generate packets : ∗/

/∗ a) for a station on the default channel ∗/
80 every 0.02 s send PACKET(255) PAYLOAD(255)

time 0.1 s

/∗ b) for the channel to mobile station 1 ∗/
85 every 0.02 s send PACKET(1) PAYLOAD(1)

time 0.1 s

/∗ c) for the channel to mobile station 2 ∗/
90 every 0.021 s send PACKET(2) PAYLOAD(2)

/∗ Declare duration of traffic simulation : ∗/
time 120s
end 130s

A.4. Extended Simulation Environment - Examples/Additional Information 115

A.4.3 Modified H-FSC - Simulation Scenario 1

Additional results to supplement the material previously presented in Chapter 7 for Sce-
nario 1 of the simulations are provided in this subsection.

Additional Simulation Results

Tables A.2 and A.3 list the average goodput rates and 95% confidence intervals for the
two mobile stations in Scenario 1 presented in Section 7.3.1.

1/GTR Mobile Scheduler Avg. 95% CI
of MS 2 Station [kbit/s] [kbit/s]

mHFSC 4887 ± 1.11
CBQ 4887 ± 1.11

mHFSC 607 ± 1.02
CBQ 607 ± 1.0

mHFSC 4887 ± 1.91
CBQ 4887 ± 1.92

mHFSC 607 ± 1.02
CBQ 607 ± 1.0

mHFSC 4887 ± 3.41
CBQ 4321 ± 2.03

mHFSC 419 ± 1.32
CBQ 607 ± 1.0

mHFSC 4887 ± 4.01
CBQ 3106 ± 2.75

mHFSC 251 ± 0.92
CBQ 607 ± 1.0

mHFSC 4886 ± 6.31
CBQ 2481 ± 1.87

mHFSC 180 ± 1.02
CBQ 523 ± 0.9

mHFSC 4885 ± 11.01
CBQ 1976 ± 3.410

mHFSC 126 ± 1.22
CBQ 417 ± 1.0

Table A.2: Average goodput rates of
the two mobile stations in Scenario 1
of the simulations (Section 7.3.1, Fig-
ure 7.7) for varying adaptive modula-
tion of MS 2.

pb Mobile Scheduler Avg. 95% CI
of MS 2 Station [kbit/s] [kbit/s]

mHFSC 4887 ± 1.11
CBQ 4887 ± 1.10

mHFSC 607 ± 1.02
CBQ 607 ± 1.0

mHFSC 4887 ± 5.31
CBQ 4878 ± 11.00.02

mHFSC 603 ± 3.12
CBQ 603 ± 2.2

mHFSC 4885 ± 8.41
CBQ 4818 ± 32.10.05

mHFSC 598 ± 5.62
CBQ 592 ± 5.7

mHFSC 4875 ± 16.41
CBQ 4606 ± 58.30.20

mHFSC 565 ± 17.22
CBQ 551 ± 8.3

mHFSC 4874 ± 15.11
CBQ 4224 ± 95.00.33

mHFSC 491 ± 29.92
CBQ 503 ± 11.8

mHFSC 4878 ± 15.51
CBQ 3567 ± 93.90.50

mHFSC 263 ± 28.22
CBQ 435 ± 15.0

Table A.3: Average goodput rates of
the two mobile stations in Scenario 1 of
the simulations (Section 7.3.1, Figure
7.8) for a varying probability of a bad
channel-state of MS 2 in the Markov
model.

Configuration of Link-Sharing Hierarchy

Listing A.2 lists the script used to configure the link-sharing hierarchy simulated in Sce-
nario 1 of the simulations.

Listing A.2: Configuration of link-sharing hierarchy of Scenario 1

/∗
∗ TCSIM: wireless H−FSC configuration for simulated Scenario 1
∗/

5

#include " ip . def"

dev eth1 6144 /∗ 6 Mbit/s assumed max. goodput for 11 Mbit/s card ∗/

116 A. Kernel Configuration and Developed Testbed Tools

10 /∗ Device to be configured ∗/
#define DEVICE eth1

/∗ Max. queue length ∗/
#define QUEUE_LENGTH 15

15

/∗ IP addresses of mobile hosts ∗/
#define MS1IP 192.168.23.1
#define MS2IP 192.168.23.2

20 /∗ Packets ∗/
#define PAYLOAD(n) (n) x 980
#define PACKET(n) UDP_PCK($src=10.0.0.249 $dst=##n \

$sport=PORT_HTTP $dport=5000)

25 /∗ install wireless channel monitor module ∗/
insmod / usr / src / tcng / tcsim /modules/wchmon_ratio.o

/∗ Set up wireless simulation : ∗/

30 tc qdisc add dev DEVICE root handle 1:0 chsim limit 1 p_gb 0 p_bg 1 \
e_P 0 avg_size 1000 max_retrans 10 channel_rate 6144kbit \
clear_dst_addr

tc class add dev DEVICE parent 1:0 classid 1:2 chsim p_gb 0 p_bg 1 \
35 e_P 1 adapt_mod 1

tc filter add dev DEVICE parent 1:0 protocol ip u32 match \
ip dst MS2IP flowid 1:2

40

/∗ Add root queue disc for HFSC ∗/
tc qdisc add dev DEVICE parent 1:0 handle 10:0 hfsc bandwidth 6Mbit \
wireless wchmon ratio reducebad 100

45 /∗ Add class for company A ∗/
/∗ SLA: 4424 kBit/s at g=0.9 −> 4915 kBit/s resources

(80% of 6MBit) ∗/
tc class add dev DEVICE parent 10:0 classid 10:1 hfsc \
[sc 0 0 4915 kbit] sync

50

/∗ Add class for company B ∗/
/∗ SLA: 614 kBit/s at g=0.5 −> 1229 kbit / s of resources

(20% of 6 MBit ∗/
tc class add dev DEVICE parent 10:0 classid 10:2 hfsc \

55 [sc 0 0 1229 kbit] sync

/∗ Add class for mobile one ∗/
tc class add dev DEVICE parent 10:1 classid 10:100 hfsc \
[sc 0 0 4424 kbit]

60 /∗ set queue length for mobile one ∗/

A.4. Extended Simulation Environment - Examples/Additional Information 117

tc qdisc add dev DEVICE parent 10:100 pfifo limit QUEUE_LENGTH

/∗ Add class for mobile two ∗/
tc class add dev DEVICE parent 10:2 classid 10:200 hfsc \

65 [sc 0 0 614 kbit]
/∗ set queue length for mobile two ∗/
tc qdisc add dev DEVICE parent 10:200 pfifo limit QUEUE_LENGTH

/∗ Define filters : ∗/
70 tc filter add dev DEVICE parent 10:0 protocol ip prio 100 u32 match \

ip dst MS1IP flowid 10:100

tc filter add dev DEVICE parent 10:0 protocol ip prio 100 u32 match \
ip dst MS2IP flowid 10:200

75

/∗
∗ Generate traffic : 4800 kbit / s to MS 1 and
∗ 614 kbit / s to MS 2

80 ∗
∗ (packet payload 980 bytes + header)
∗/

every 0.00165s send PACKET(MS1IP) PAYLOAD(1)
85 every 0.01327s send PACKET(MS2IP) PAYLOAD(2)

time 180s

A.4.4 Modified H-FSC - Simulation Scenarios 2 and 3

Listing A.3 shows the configuration script used to configure the hierarchical link-sharing
structure of Figure 7.10 used in the Scenario 2 and Scenario 3 of the simulation section.

Listing A.3: Configuration of link-sharing hierarchy of Scenarios 2 and 3

/∗
∗ Linux Wireless Scheduling

5 ∗
∗ example script for modified hierarchical fair service curve scheduler
∗
∗ Simulation Scenario 2 & 3
∗ −−−−−−−−−−−−−−−−−−−−−

10 ∗
∗ 1 access point , 1.6 MBit downlink capacity to be scheduled
∗
∗ two agencies , each with VoIP, WWW, ftp
∗

15 ∗ (traffic generation done by " trafgen ": markov−modeled ON/OFF CBR)
∗/

#include " ip . def"

118 A. Kernel Configuration and Developed Testbed Tools

20 #define VOIP_QUEUE_LIMIT 3

#define PAYLOAD_VoIP(n) (n) x 44 /∗ +header = 64 bytes ∗/
#define PAYLOAD_www(n) (n) x 492
#define PAYLOAD_ftp(n) (n) x 1004

25

#define PORT_VOIP 0x1111 /∗ port of VoIP application ∗/
#define PORT_FTP 21

#define PACKET_www(ms) TCP_PCK($src=10.0.0.249 $dst=10.0.0.##ms \
30 $sport=PORT_HTTP $dport=PORT_HTTP)

#define PACKET_ftp(ms) TCP_PCK($src=10.0.0.249 $dst=10.0.0.##ms \
$sport=PORT_FTP $dport=PORT_FTP)

#define PACKET_VoIP(ms) UDP_PCK($src=10.0.0.249 $dst=10.0.0.##ms \
$sport=PORT_VOIP $dport=PORT_VOIP)

35

/∗ Configure wireless device ∗/

dev eth1 1600 /∗ 1.6 Mbit max. capacity of wireless link ∗/

40 insmod / usr / src / tcng / tcsim /modules/wchmon_ratio.o

/∗ Setup TC architecture ∗/

/∗ =============== Start of wireless channel simulation ============= ∗/
45

/∗ The default class is used for the 14 good channels ∗/

tc qdisc add dev eth1 root handle 1:0 chsim limit 1 p_gb 0 p_bg 1 \
e_P 0 avg_size 500 max_retrans 0 channel_rate 1600kbit \

50 clear_dst_addr

/∗ define class for the bad channel , adaptive modulation of 1/10 ∗/
tc class add dev eth1 parent 1:0 classid 1:20 chsim p_gb 0 p_bg \
1 e_P 0 adapt_mod 10

55

tc filter add dev eth1 parent 1:0 protocol ip u32 match \
ip dst 10.0.0.2 flowid 1:20

/∗ −
60 Now the setup of our simulated wireless environment is done

and we start setting up the packet scheduling on top of it :
− ∗/

/∗ root qdisc and parent class ∗/
65 tc qdisc add dev eth1 parent 1:0 handle 10:0 hfsc bandwidth 2.1Mbit \

estint 32000b wireless wchmon ratio reducebad 100

/∗ two interior classes for the two different agencies , both are
70 wireless synchronization classes since agency A and B are

A.4. Extended Simulation Environment - Examples/Additional Information 119

competitors ∗/
tc class add dev eth1 parent 10:0 classid 10:10 hfsc [sc 0 0 .400 Mbit] \
sync default /∗ [dc 0 0 .064 Mbit] ∗/
tc class add dev eth1 parent 10:0 classid 10:20 hfsc [sc 0 0 1.200 Mbit] \

75 sync /∗ [dc 0 0 .064 Mbit] ∗/

/∗ agency one , subclasses for VoIP, www, ftp ∗/
tc class add dev eth1 parent 10:10 classid 10:1100 hfsc [sc .300 Mbit 20ms .200Mbit]

default
tc class add dev eth1 parent 10:10 classid 10:1200 hfsc [sc 0 20 ms .150Mbit]

80 tc class add dev eth1 parent 10:10 classid 10:1300 hfsc [sc 0 20 ms .050Mbit]

/∗ agency two , subclasses for VoIP, www, ftp ∗/
tc class add dev eth1 parent 10:20 classid 10:2100 hfsc [sc .900 Mbit 20ms .600Mbit]
tc class add dev eth1 parent 10:20 classid 10:2200 hfsc [sc 0 20 ms .500Mbit]

85 tc class add dev eth1 parent 10:20 classid 10:2300 hfsc [sc 0 20 ms .100Mbit]

/∗ customers of first agency , VoIP , 10 users ∗/
tc class add dev eth1 parent 10:1100 classid 10:1101 hfsc [sc 0.03 Mbit 20ms 0.02Mbit] \
/∗ [dc 0 0 .015 Mbit] ∗/ default

90 tc class add dev eth1 parent 10:1100 classid 10:1102 hfsc [sc 0.03 Mbit 20ms 0.02Mbit] \
. . . until
/∗ [dc 0 0 .015 Mbit] ∗/
tc class add dev eth1 parent 10:1100 classid 10:1110 hfsc [sc 0.03 Mbit 20ms 0.02Mbit] \
/∗ [dc 0 0 .015 Mbit] ∗/

95

/∗ Adapt queue length for VoIP: 250ms∗20kbit/s=625byte −> queue length
of 9 packets is enough at maximum rate ∗/

tc qdisc add dev eth1 parent 10:1101 pfifo limit VOIP_QUEUE_LIMIT
100 tc qdisc add dev eth1 parent 10:1102 pfifo limit VOIP_QUEUE_LIMIT

. . . until
tc qdisc add dev eth1 parent 10:1110 pfifo limit VOIP_QUEUE_LIMIT

/∗ customers of first agency , www, 3 users ∗/
105 tc class add dev eth1 parent 10:1200 classid 10:1201 hfsc [sc 0 20 ms .050Mbit]

tc class add dev eth1 parent 10:1200 classid 10:1202 hfsc [sc 0 20 ms .050Mbit]
tc class add dev eth1 parent 10:1200 classid 10:1203 hfsc [sc 0 20 ms .050Mbit]

/∗ customer of first agency , ftp , 2 users ∗/
110 tc class add dev eth1 parent 10:1300 classid 10:1301 hfsc [sc 0 20 ms .025Mbit]

tc class add dev eth1 parent 10:1300 classid 10:1302 hfsc [sc 0 20 ms .025Mbit]

115 /∗ customers of second agency , VoIP , 30 users ∗/
tc class add dev eth1 parent 10:2100 classid 10:2101 hfsc [sc 0.03 Mbit 20ms 0.02Mbit] \
/∗ [dc 0 0 .015 Mbit] ∗/
tc class add dev eth1 parent 10:2100 classid 10:2102 hfsc [sc 0.03 Mbit 20ms 0.02Mbit] \
. . . until

120 /∗ [dc 0 0 .015 Mbit] ∗/
tc class add dev eth1 parent 10:2100 classid 10:2130 hfsc [sc 0.03 Mbit 20ms 0.02Mbit] \

120 A. Kernel Configuration and Developed Testbed Tools

/∗ [dc 0 0 .015 Mbit] ∗/

/∗ Adapt max. queue length for all VoIP classes of second agency ∗/
125 tc qdisc add dev eth1 parent 10:2101 pfifo limit VOIP_QUEUE_LIMIT

tc qdisc add dev eth1 parent 10:2102 pfifo limit VOIP_QUEUE_LIMIT
. . . until
tc qdisc add dev eth1 parent 10:2130 pfifo limit VOIP_QUEUE_LIMIT

130 /∗ customers of second agency , www, 10 users ∗/
tc class add dev eth1 parent 10:2200 classid 10:2201 hfsc [sc 0 20 ms .050Mbit]
tc class add dev eth1 parent 10:2200 classid 10:2202 hfsc [sc 0 20 ms .050Mbit]
. . . until
tc class add dev eth1 parent 10:2200 classid 10:2210 hfsc [sc 0 20 ms .050Mbit]

135

/∗ customers of second agency , ftp , 2 users ∗/
tc class add dev eth1 parent 10:2300 classid 10:2301 hfsc [sc 0 20 ms .050Mbit]
tc class add dev eth1 parent 10:2300 classid 10:2302 hfsc [sc 0 20 ms .050Mbit]

140

/∗ TRAFFIC FILTER SETUP ∗/

/∗ Add filters for agency 1 customers , 10 users , VoIP ∗/
145 tc filter add dev eth1 parent 10:0 protocol ip u32 match \

ip dst 10.0.0.1 match ip sport PORT_VOIP 0xffff flowid 10:1101
tc filter add dev eth1 parent 10:0 protocol ip u32 match \

ip dst 10.0.0.2 match ip sport PORT_VOIP 0xffff flowid 10:1102
. . . until

150 tc filter add dev eth1 parent 10:0 protocol ip u32 match \
ip dst 10.0.0.10 match ip sport PORT_VOIP 0xffff flowid 10:1110

/∗ Add filters for agency 1 customers , www, 3 users ∗/
tc filter add dev eth1 parent 10:0 protocol ip u32 match \

155 ip dst 10.0.0.1 match ip sport PORT_HTTP 0xffff flowid 10:1201
tc filter add dev eth1 parent 10:0 protocol ip u32 match \

ip dst 10.0.0.2 match ip sport PORT_HTTP 0xffff flowid 10:1202
tc filter add dev eth1 parent 10:0 protocol ip u32 match \

ip dst 10.0.0.3 match ip sport PORT_HTTP 0xffff flowid 10:1203
160

/∗ Add filters for agency 1 customers , ftp , 1 user ∗/
tc filter add dev eth1 parent 10:0 protocol ip u32 match \

ip dst 10.0.0.1 match ip sport PORT_FTP 0xffff flowid 10:1301
tc filter add dev eth1 parent 10:0 protocol ip u32 match \

165 ip dst 10.0.0.2 match ip sport PORT_FTP 0xffff flowid 10:1302

/∗ Add filters for agency 2 customers , 30 users , VoIP ∗/
tc filter add dev eth1 parent 10:0 protocol ip u32 match \

ip dst 10.0.0.11 match ip sport PORT_VOIP 0xffff flowid 10:2101
170 tc filter add dev eth1 parent 10:0 protocol ip u32 match \

ip dst 10.0.0.12 match ip sport PORT_VOIP 0xffff flowid 10:2102
. . . until
tc filter add dev eth1 parent 10:0 protocol ip u32 match \

A.4. Extended Simulation Environment - Examples/Additional Information 121

ip dst 10.0.0.40 match ip sport PORT_VOIP 0xffff flowid 10:2130
175

/∗ Add filters for agency 2 customers , www, 10 users ∗/
tc filter add dev eth1 parent 10:0 protocol ip u32 match \

ip dst 10.0.0.11 match ip sport PORT_HTTP 0xffff flowid 10:2201
tc filter add dev eth1 parent 10:0 protocol ip u32 match \

180 ip dst 10.0.0.12 match ip sport PORT_HTTP 0xffff flowid 10:2202
. . . until
tc filter add dev eth1 parent 10:0 protocol ip u32 match \

ip dst 10.0.0.20 match ip sport PORT_HTTP 0xffff flowid 10:2210

185 /∗ Add filters for agency 2 customers , ftp , 2 user ∗/
tc filter add dev eth1 parent 10:0 protocol ip u32 match \

ip dst 10.0.0.11 match ip sport PORT_FTP 0xffff flowid 10:2301
tc filter add dev eth1 parent 10:0 protocol ip u32 match \

ip dst 10.0.0.12 match ip sport PORT_FTP 0xffff flowid 10:2302
190

/∗ Voice over IP for all customers ∗/

every 0.03 s send PACKET_VoIP(1) PAYLOAD_VoIP(1)
195 every 0.03 s send PACKET_VoIP(2) PAYLOAD_VoIP(2)

. . . until
every 0.03 s send PACKET_VoIP(40) PAYLOAD_VoIP(40)

200 /∗ (The remaining traffic is generated using TrafGen.) ∗/

122 A. Kernel Configuration and Developed Testbed Tools

B. Source Code Files

The implementation of the wireless scheduling extensions and the modified H-FSC sched-
uler within the Linux environment consists of various files within the kernel source tree.
Table B.1 lists the added/modified files. Additionally, the traffic control program tc of the
iproute2 package was extended to parse options for the new schedulers (Table B.2). The
drivers for the Raylink and Lucent/Avaya WLAN cards, which are part of the PCMCIA
card services, were modified to provide information for wireless channel monitors, which
is used e.g. by the driver channel monitor. (Chapter 6 gives a detailed description of the
design and implementation of the prototype.)

Because of space limitations, the listings of the various source code files are not included
in this thesis. The complete sources, including the patch for the Linux 2.4.X kernel, are
distributed under the GNU Public License and can be downloaded at [66]. Furthermore,
the most important source code files of the prototype implementation are documented in
a technical report [67].

124 B. Source Code Files

Path File Changed Description
/New

/net netsyms.c C Added export of channel monitor
interface.

/net/sched Config.in C Added configuration options.
/net/sched sch_chsim.c N Wireless channel simulation qdisc.
/net/sched sch_csfifo.c N Example qdisc: wireless FIFO.
/net/sched sch_hfsc.c N Wireless H-FSC qdisc.
/net/sched sch_hfsc.h N Data structures for wireless H-FSC.
/net/sched wchmon_api.c N Wireless channel monitor interface.
/net/sched wchmon_driver.c N NIC driver based channel monitor.
/net/sched wchmon_dummy.c N Dummy channel monitor.
/net/sched wchmon_ratio.c N Dequeuing delay based channel

monitor.
/net/sched Makefile C Added new modules.
/include/net pkt_sched.h C Clock source changed.

(see Section A.2)
/include/net pkt_wsched.h N Declarations for wireless scheduling.
/include/linux pkt_sched.h C Added netlink structures for H-FSC.
/include/linux pkt_wsched.h N Wireless specific netlink structures.
/include/linux netdevice.h C Channel monitor added to

network device structure.

Table B.1: Added/modified files in Linux kernel source tree.

Path File Changed Description
/New

/iproute2/tc q_chsim.c N Parsing options for chsim qdisc.
/iproute2/tc q_csfifo.c N Parsing options for csfifo qdisc.
/iproute2/tc q_hfsc.c N Parsing options for hfsc qdisc.
/iproute2/tc wsched_util.c N Common functions for parsing

of wireless scheduler options.
/iproute2/tc wsched_util.h N Declarations for parsing

of wireless scheduler options.

Table B.2: Added/modified files in iproute2 source tree.

Path File Changed Description
/New

/pcmcia-cs/wireless ray_cs.c C Raylink driver - added calls
to channel monitor interface.

/pcmcia-cs/wireless wvlan_cs.c C Lucent/Avaya driver - added
calls to channel monitor interface.

/pcmcia-cs Configure C Added wireless configuration.

Table B.3: Added/modified files in pcmcia-cs source tree.

Acknowledgments

This work would not have been possible without the support of many others. Most of
the research was done at the Applied Research Laboratory, Washington University in
St. Louis, and I am very thankful that I had the exciting opportunity to work there. I
would like to thank Professor John Lockwood, Professor Gruia-Catalin Roman, and many
others at the computer science department of Washington University for making this stay
possible. Professor Lockwood was an excellent advisor and always had time to discuss
my questions. I would also like to thank Nicola Aschwanden and Marcel Waldvogel
for all their help during my first weeks in St. Louis, Ramaprabhu Janakiraman for many
suggestions and even more cups of coffee, which improved early versions of this work,
also Sarang Dharmapurikar and Wei Deng for enduring me as office mate and contributing
equipment for the wireless measurements.

At TU Berlin, I owe many thanks to Professor Adam Wolisz of the Telecommunication
Research Group and to the International Office, especially Jutta Gbur, for their support. In
addition, I would like to thank Ana Cristina Costa Aguiar for suggesting many improve-
ments and helping me to get everything into the shape of a thesis. Furthermore, James
Gross and Michael Jaeger did put a lot of time and effort in proofreading the final version
and made many useful comments – I am very grateful for the interesting time we spent
studying together in Berlin.

Finally, I would like to thank my family for their unconditional support and encourage-
ment, especially my fiancée Lena for her patience, help, and always being there.

126 Acknowledgments

Acronyms

ABR Available Bit Rate
ACK ACKnowledgment frame
AF Assured Forwarding
AGC Automatic Gain Control
ANSI American National Standards Institute
AP Access Point
API Application Programmer Interface
ARP Address Resolution Protocol
ARQ Automatic Repeat reQuest
ATM Asynchronous Transfer Mode
BR Bit-by-bit Round robin
BSD Berkeley Software Distribution
CBR Constant Bit Rate
CBQ Class Based Queuing
CDMA Code Division Multiple Access
CIF Channel-condition Independent Fair
CIF-Q Channel-condition Independent Fair Queuing
CSDPS Channel-State Dependent Packet Scheduling
CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
CSMA/CD Carrier Sense Multiple Access/Collision Detection
CS-WFQ Channel-State Independent Wireless Fair Queuing
CTD Cell Transfer Delay (ATM)
CTS Clear To Send
DiffServ Differentiated Services
DL Data Link Layer
DoS Denial of Service
DRR Deficit Round Robin
DS Differentiated Services
DSCP Differentiated Services CodePoint
DSSS Direct Sequence Spread Spectrum
EF Expedited Forwarding
FCFS First Come First Served
FDMA Frequency Division Multiple Access
FEC Forward Error Correction
FHSS Frequency Hopping Spread Spectrum
FIFO First In First Out
FQ Fair Queuing
FTP File Transfer Protocol

128 Acronyms

GFR Guaranteed Frame Rate
GPS Generalized Processor Sharing
GTR Goodput to raw Throughput Ratio
H-GPS Hierarchical Generalized Processor Sharing
H-FSC Hierarchical Fair Service Curve algorithm
HOL Head Of Line
H-PFQ Hierarchical Packet Fair Queuing
ICMP Internet Control Message Protocol
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IntServ Integrated Services
IO Input Output
IOCTL Input Output ConTroL
IP Internet Protocol
ISP Internet Service Provider
IWFQ Idealized Wireless Fair Queuing
JNI Java Native Interface
LAN Local Area Network
LCFS Last Come First Out
LLC Logical Link Control
LSP Label Switched Path
LSR Label Switched Router
LTFS Long-Term Fairness Server
MAC Medium Access Control
MCR Minimum Cell Rate
MPFQ wireless Multi-class Priority Fair Queuing
MPLS MultiProtocol Label Switching
MS Mobile Station
NAT Network Address Translation
NIC Network Interface Card
nrtVBR non-real-time Variable Bit Rate
OS Operating System
OSI Open Systems Interconnection
PCI Peripheral Component Interconnect (Intel)
PCMCIA Personal Computer Memory Card International Association
PGPS Packet-by-packet Generalized Processor Sharing
PHB Per-Hop-Behavior
PHY PHYsical layer
PSA Parameter Storage Area
QoS Quality of Service
RED Random Early Detection
RF Radio Frequency
RSVP Resource reSerVation Protocol
RTS Request To Send
rtVBR real-time Variable Bit Rate
SBFA Server Based Fairness Approach
SC Service Curve
SFQ Start-time Fair Queuing
SLA Service Level Agreement

129

SNR Signal to Noise Ratio
STFQ Stochastic Fair Queuing
TBF Token Bucket Filter
TC Traffic Control
TCC Traffic Control Compiler
TCF Traffic Control Filter
TCNG Traffic Control Next Generation
TCSIM Traffic Control Simulator
TCP Transmission Control Protocol
TDMA Time Division Multiple Access
TOS Type Of Service
UBR Unspecified Bit Rate
UDP User Datagram Protocol
VC Virtual Channel
VoIP Voice over IP
WEP Wired Equivalent Privacy (IEEE 802.11)
WF2Q Worst-case Fair Weighted Fair Queuing
WF2Q+ Worst-case Fair Weighted Fair Queuing plus
W2F2Q Wireless Worst-case Fair Weighted Fair Queuing
WFQ Weighted Fair Queuing
WFS Wireless Fair Service
WLAN Wireless LAN
WPS Wireless Packet Scheduling
WRR Weighted Round Robin
WWW World Wide Web
XML eXtensible Markup Language

130 Acronyms

Bibliography

[1] Werner Almesberger. Linux traffic control - implementation overview. Technical
report, EPFL, Nov 1998. http://tcng.sourceforge.net.

[2] Werner Almesberger, Jamal Hadi Salim, and Alexey Kuznetsov. Differentiated ser-
vices on linux, June 1999. http://diffserv.sourceforge.net.

[3] J. C. R. Bennett and H Zhang. Wf2q : Worst-case fair weighted fair queueing. In
Proceedings of INFOCOM ’96, San Francisco, CA, Mar. 1996.

[4] Jon C. R. Bennett and Hui Zhang. Hierarchical packet fair queueing algorithms.
IEEE/ACM Transactions on Networking, 5(5):675–689, 1997.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. RFC2475 - an
architecture for differentiated services. Informational Category, Dec. 1998.

[6] R. Braden, D. Clark, and S. Shenker. RFC1633 - integrated services in the internet
architecture: an overview. Informal Category, Jul. 1994.

[7] R. Braden, L. Zhang, S. Bersion, S. Herzog, and S. Jamin. RFC2205 - resource
reservation protocol (RSVP) - version 1 functional specification. Standards Track,
Sept. 1997.

[8] Stefan Bucheli, Jay R. Moorman, John W. Lockwood, and Sung-Mo Kang. Com-
pensation modeling for QoS support on a wireless network. Technical report, Coor-
dinated Science Laboratory, University of Illinois at Urbana-Champaign, Nov. 2000.

[9] Kenjiro Cho. Alternate Queuing for BSD Unix (ALTQ) Version 3.0. Sony Computer
Science Laboratories. http://www.csl.sony.co.jp/∼kjc/software.html.

[10] Sunghyun Choi. QoS Guarantees in Wireless/Mobile Networks. PhD thesis, Univer-
sity of Michigan, 1999.

[11] Dan Decasper, Zubin Dittia, Guru Parulkar, and Bernhard Plattner. Router plug-
ins: A software architecture for next generation routers. In Proceedings of ACM
SIGCOMM 1998, Vancouver, British Columbia, Sep. 1998.

[12] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and simulation of a
fair queueing algorithm. In Proceedings of SIGCOMM ’89, pages 3–12, 1989.

[13] Saman Desilva and Samir R. Das. Experimental evaluation of channel state de-
pendent scheduling in an in-building wireless LAN. In Proceedings of the 7th In-
ternational Conference on Computer Communications and Networks (IC3N), pages
414–421, Lafayette, LA, October 1998.

132 Bibliography

[14] Jean-Pierre Ebert and Andreas Willig. A gilbert-elliot bit error model and the ef-
ficient use in packet level simulation. Technical report, Department of Electrical
Engineering, Technical University of Berlin, 1999.

[15] David Eckhardt and Peter Steenkiste. Measurement and analysis of the error charac-
teristics of an in-building wireless network. In Proceedings of SIGCOMM’96, pages
243–254, 1996.

[16] Sally Floyd. Notes on CBQ and guaranteed service, 1995.

[17] Sally Floyd and Van Jacobsen. Link and resource management models for packet
networks. IEEE/ACM Transactions on Networking, 3(4), 1995.

[18] Sally Floyd and Van Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, August 1993.

[19] Pawan Goyal, Harrick M. Vin, and Haichen Cheng. Start-time fair queuing: A
scheduling algorithm for integrated servicespacket switching networks. Technical
Report CS-TR-96-02, Department of Computer Science, The University of Texas at
Austin, 1, 1996.

[20] J. Gross, M. Jaeger, and A. Willig. Measurements of a wireless link in different
RF-isolated environments. Technical Report TKN-01-005, Telecommunication Net-
works Group, Technische Universität Berlin, June 2001.

[21] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. RFC2597 - assured forwarding
PHB group. Standards Track, Jun. 1999.

[22] Bert Hubert, Gregory Maxwell, Remco van Mook, Martijn van Oosterhout, Paul B.
Schroeder, and Jasper Spaans. Linux 2.4 advanced routing howto, Apr 2001.
http://www.ds9a.nl/2.4Routing.

[23] Raylink Inc. Raylink user manual. http://www.raylink.com/pdf/pccard.pdf.

[24] V. Jacobson, K. Nichols, and K. Poduri. RFC2598 - an expedited forwarding PHB.
Standards Track, Jun. 1999.

[25] Linux sources and GNU general public license. http://www.kernelnotes.org.

[26] S. Keshav. On the efficient implementation of fair queueing. Journal of Internet-
working Research and Experience, 2(3), 1991.

[27] Alexey Kuznetsov. iproute2 package. ftp://ftp.inr.ac.ru/ip-routing/.

[28] L. Keng Lim, Jun Gao, T.S. Eugene Ng, Prashant Chandra, Peter Steenkiste, and Hui
Zhang. Customizable virtual private network service with QoS. Computer Networks,
Elsevier Science, special issue on Overlay Networks, to appear in 2001.

[29] P. Lin, B. Bensaou, Q.L. Ding, and K.C. Chua. A wireless fair scheduling algorithm
for error-prone wireless channels. Proceedings of ACM WoWMOM 2000, 2000.

[30] S. Lu, T. Nandagopal, and V. Bharghavan. Design and analysis of an algorithm for
fair service in error-prone wireless channels. Wireless Networks Journal, Feb. 1999.

Bibliography 133

[31] Songwu Lu, Vaduvur Bharghavan, and R. Srikant. Fair scheduling in wireless packet
networks. Proceedings of ACM SIGCOMM 1997, 1997.

[32] Matthew T. Lucas, Dallas E. Wrege, Bert J. Dempsey, and Alfred C. Weaver. Sta-
tistical characterization of wide-area ip traffic. In Proceedings of Sixth International
Conference on Computer Communications and Networks (IC3N’97), Las Vegas, NV,
USA, Sep. 1997.

[33] Paul E. McKenney. Stochastic fairness queueing. Journal of Internetworking Re-
search and Experience, 2:113–131, 1991.

[34] Jay R. Moorman. Supporting quality of service on a wireless channel for ATM
wireless networks. Master’s thesis, University of Illinois at Urbana-Champaign,
1999.

[35] Jay R. Moorman. Quality of Service Support For Heterogeneous Traffic Across Hy-
brid Wired and Wireless Networks. PhD thesis, University of Illinois at Urbana-
Champaign, 2001.

[36] Jay R. Moorman, John Lockwood, and Sung-Mo Kang. Wireless quality of service
using multiclass priority fair queuing. IEEE Journal on Selected Areas in Commu-
nications, Aug. 2000.

[37] Jay R. Moorman and John W. Lockwood. Multiclass priority fair queuing for hy-
brid wired/wireless quality of service support. WoWMOM 99 - Proceedings of The
Second ACM International Workshop on Wireless Mobile Multimedia, pages 43–50,
Aug. 1999.

[38] Christian Worm Mortensen. An implementation of a weighted round robin scheduler
for linux traffic control. http://wipl-wrr.sourceforge.net.

[39] Thyagarajan Nandagopal, Songwu Lu, and Vaduvur Bharghavan. A unified architec-
ture for the design and evaluation of wireless fair queueing algorithms. MobiCom’99
- Proceedings of The Fifth Annual ACM/IEEE International Conference on Mobile
Computing and Networking, pages 132–142, Aug. 1999.

[40] T. S. Eugene Ng, Donpaul C. Stephens, Ion Stoica, and Hui Zhang. Supporting best-
effort traffic with fair service curve. In Measurement and Modeling of Computer
Systems, pages 218–219, 1999.

[41] T. S. Eugene Ng, Ion Stoica, and Hui Zhang. Packet fair queueing algorithms
for wireless networks with location-dependent errors. Proceedings of IEEE INFO-
COMM, page 1103, 1998.

[42] T. S. Eugene Ng, Ion Stoica, and Hui Zhang. Packet fair queueing algorithms for
wireless networks with location-dependent errors. Technical Report CMU-CS-00-
112, School of Computer Science, Carnegie Mellon University, 2000.

[43] Brian Noble, M. Satyanarayanan, Giao Thanh Nguyen, and Randy H. Katz. Trace-
based mobile network emulation. In SIGCOMM, pages 51–61, 1997.

[44] David Olshefski. TC API Beta 1.0. IBM T.J. Watson Research.
http://oss.software.ibm.com/developerworks/projects/tcapi/.

134 Bibliography

[45] Abhay K. Parekh and Robert G. Gallage. A generalized processor sharing approach
to flow control in integrated services networks: The single-node case. IEEE/ACM
Transactions on Networking, 1(3), Jun. 1993.

[46] PCMCIA card services for linux. http://pcmcia-cs.sourcforge.net.

[47] Saravanan Radhakrishnan. Linux - advanced networking overview - version 1.
Technical report, Information and Telecommunications Technology Center, Depart-
ment of Electrical Engineering and Computer Science, The University of Kensas,
Lawrence, KS 66045-2228, Aug 1999.

[48] Parameswaran Ramanathan and Prathima Agrawal. Adapting packet fair queueing
algorithms to wireless networks. In Mobile Computing and Networking, pages 1–9,
1998.

[49] E. Rosen, A. Viswanathan, and R. Callon. RFC3031 - multiprotocol label switching
architecture. Standards Track, Jan. 2001.

[50] Rusty Russell. Linux 2.4 packet filtering howto. http://netfilter.samba.org.

[51] S. Shenker, C. Partridge, and R. Guerin. RFC2212 - specification of guaranteed
quality of service. Standards Track, Sept. 1997.

[52] Scott Shenker, David D. Clark, and Lixia Zhang. A scheduling service model
and a scheduling architecture for an integrated services packet network preprint.
http://citeseer.nj.nec.com/shenker93scheduling.html, 1993.

[53] M. Shreedhar and George Varghese. Efficient fair queueing using deficit round robin.
In Proceedings of SIGCOMM ’95, pages 231–242, 1995.

[54] IEEE Computer Society. IEEE std. 802.11: Wireless LAN medium access control
(MAC) and physical layer (PHY) specications, Jun. 1997.

[55] IEEE Computer Society. Supplement to IEEE std. 802.11: Wireless LAN medium
access control (MAC) and physical layer (PHY) specications: Higher-speed physical
layer extensions in the 2.4 GHz band, Sep. 1999.

[56] M. Srivastava, C. Fragouli, and V. Sivaraman. Controlled multimedia wireless
link sharing via enhanced class-based queueing with channel-state-dependent packet
scheduling. In Proceedings of the Conference on Computer Communications (IEEE
Infocom), pages 572–, April 1998.

[57] W. Richard Stevens. TCP/IP Illustrated: The Protocols. Addison-Wesley Publishing
Company, 1994. ISBN 0-201-63346-9 (v.1).

[58] Ion Stoica, Hui Zhang, and T.S. Eugene Ng. A hierarchical fair service curve algo-
rithm for link-sharing, real-time and priority service. In Proceedings of SIGCOMM
’97, 1997. http://www.cs.cmu.edu/∼zhang/HFSC/.

[59] SUN Java 2 platform version 1.3 (standard edition).
http://java.sun.com/j2se/1.3/.

[60] Agere Systems. User’s guide for orinoco PC card, Sept. 2000.
ftp://ftp.orinocowireless.com/pub/docs/ORINOCO/MANUALS/ug_pc.pdf.

Bibliography 135

[61] Jean Tourrilhes. Linux Wireless Extension/Wireless Tools. Hewlett Packard.
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html.

[62] Zheng Wang. Internet QoS: Architectures and Mechanisms for Quality of Service.
Morgan Kaufmann Publishers, 2001.

[63] Ellen Kayata Wesel. Wireless Multimedia Communications - Networking Video,
Voice, and Data. Addison-Wesley, 1997.

[64] A. Willig, M. Kubisch, and A. Wolisz. Bit error rate measurements – second
campaign, longterm1 measurement. TKN Technical Report Series TKN-00-009,
Telecommunication Networks Group, Technical University Berlin, November 2000.

[65] A. Willig, M. Kubisch, and A. Wolisz. Bit error rate measurements – second
campaign, longterm2 measurement. TKN Technical Report Series TKN-00-010,
Telecommunication Networks Group, Technical University Berlin, November 2000.

[66] Lars Wischhof. Modified h-fsc scheduler and linux wireless scheduling patch.
http://wsched.sourceforge.net.

[67] Lars Wischhof and John Lockwood. Packet scheduling for link-sharing and quality
of service support in wireless local area networks. Technical Report WUCS-01-35,
Applied Research Laboratory, Washington University in St. Louis, November 2001.

[68] Lars Wischhof and John Lockwood. A resource-based approach to MAC layer in-
dependent hierarchical link-sharing in wireless local area networks. In Proceedings
of European Wireless 2002, Florence, Italy, Feb. 2002.

[69] J. Wroclawski. RFC2211 - specification of the controlled-load network element
service. Standards Track, Sept. 1997.

136 Index

Index

ad-hoc mode, 109
admission control, 3
Ancestor-Only link-sharing, 26
Assured Forwarding (AF), 4
ATM, 5, 47
Automatic Gain Control, 69

backlogged, 9
best effort service, 1, 8, 11
better-than-best-effort service, 3
bind, 47
bit-by-bit round robin (BR), 12

calibration tool, 108
CBQ, 46
change, 47
channel monitor calibration, 108
channel-condition independent fair

(CIF), 17
Channel-Condition Independent Packet

Fair Queueing (CIF-Q), 16
Channel-State Independent Wireless

Fair Queuing (CS-WFQ), 20
Clark-Shenker-Zhang scheduler, 47
class, 24, 45
Class Based Queuing (CBQ), 24
class characteristics, 25
class id, 47
cls_fw, 49
cls_route, 49
cls_rsvp, 49
cls_u32, 49
controlled load service, 3
CSDPS, 26
csz, 47

datagram service, 5
Deficit Round Robin (DRR), 11
Deficit Round Robin+ (DRR+), 11
DeficitCounter, 11
Differentiated Services, 4
Differentiated Services Codepoint, 4, 47

DiffServ, 4
dropper, 4
DS, 4
DSCP, 4
dsmark, 47

egalitarian system (scheduling), 20
eligible list, 64
estimator, 24, 26
Expedited Forwarding (EF), 4

Fair Queuing, 12
fairness properties, 28
FIFO, 57
filter, 45
First Come First Served (FCFS), 8
First In First Out (FIFO), 8

general scheduler, 24
Generalized Processor Sharing (GPS), 9,

13
Generalized Random Early Detection

(GRED), 46
generic filters, 49
Gilbert-Elliot channel model, 14, 77
GnuPlot, 111
graceful degradation, 17, 19
graft, 47
gred, 46
guaranteed service, 3

head-of-line (HOL), 8
Hierarchical Fair Service Curve

Algorithm(H-FSC), 27
Hierarchical GPS (H-GPS), 14
hierarchical link-sharing, 24

Idealized Wireless Fair Queuing
(IWFQ), 15

in-sync, 17, 18
ingress (qdisc), 46
Integrated Services, 3, 44
interference, 14

Index 137

intra-frame swapping, 16
IntServ, 3, 44
iwconfig, 109
iwspy, 109

label, 5
label distribution protocol, 5
label switched path, 5
label switched router, 5
lag parameter, 17
LCFS, 8
link-sharing, 24
link-sharing criterion, 28
link-sharing goals, 25
Linux network buffer, 47
list of filters, 64
location dependent errors, 14
long-term fairness server, 19
lookahead parameter, 18
LSP, 5
LSR, 5

major number, 47
marker, 4
Markov model, 77
meter, 4
micro-flow, 4
minor number, 47
MPLS, 5
Multiclass Priority Fair Queuing

(MPFQ), 20
multipath propagation, 14
Multiprotocol Label Switching, 5

Netlink-socket, 45, 49
noise level, 69

one-step prediction, 16

packet-by-packet Generalized Processor
Sharing (PGPS), 12

Parameter Storage Area (PSA), 69
per-hop behavior, 4
pfifo_fast, 46
PHB, 4

qdisc, 45
Quantum, 11
queue, 46
Queuing Discipline, 45

Random Early Detection (RED), 46
real-time criterion, 28
real-time services, 3
red, 46
reservation (of resources), 3
resource-consumption, 57
RSVP, 44

scheduler, 46
Server Based Fairness Approach

(SBFA), 19
service curve, 27
sfq, 46
shaper, 4
signal level, 69, 108
signal quality, 69, 108
sk_buff, 47
skb, 47
softlink device, 112
spreading (of slots), 16
Start-time Fair Queuing (SFQ), 13
Stochastic Fair Queuing (STFQ), 11
Strict Priority, 8
synchronization class, 37

tail dropping, 8
tbf, 46
TCSIM, 76, 112
Token Bucket Filter (TBF), 46
Top Level link-sharing, 26
totalitarian situation (scheduling), 20
Traffic Control (TC), 43
Traffic Control Compiler (TCC), 52
traffic control extensions, 53
Traffic Control Next Generation

(TCNG), 52
Traffic Control Simulator (TCSIM), 52

UDP, 82, 93, 109

virtual circuit, 5

WchmonPackGen, 111
WchmonSigMap, 108
Weighted Fair Queueing (WFQ), 12
Weighted Round Robin (WRR), 10
wireless channel monitor, 54, 55, 69
wireless compensation, 14, 15
wireless compensation

credit, 16

138 Index

debit, 16
wireless extensions, 72
Wireless Fair Service (WFS), 18
wireless FIFO, 57
Wireless Packet Scheduling (WPS), 16
wireless simulation, 77
Wireless Worst-case Fair Weighted Fair

Queuing (W2F2Q), 19
Worst-case Fair Weighted Fair Queuing

(WF2Q), 13
Worst-Case Fair Weighted Fair Queuing

plus (WF2Q+), 14
WRR, 47

